PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1569758
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1569758
According to Stratistics MRC, the Global Battery Housing Market is accounted for $5.95 billion in 2024 and is expected to reach $16.81 billion by 2030 growing at a CAGR of 18.89% during the forecast period. In energy storage systems, battery housing is essential, especially for electric vehicles (EVs) and renewable energy applications. In order to ensure safe and dependable operation, it acts as the protective casing that encloses and shields the battery cells from external impacts, environmental factors, and thermal fluctuations. Battery housings are made of steel, aluminum, or composite materials and are intended to be lightweight without sacrificing structural integrity or thermal management capabilities.
According to the International Energy Agency (IEA), battery demand is projected to grow seven times by 2035 compared with 2023 in the Stated Policies scenario, nine times in the Announced Pledges scenario, and 12 times in the Net Zero Emissions scenario by 2050 scenario.
Growing interest in electric cars (EVs)
One of the main factors propelling the market for battery housing is the increase in the use of electric vehicles worldwide. Automakers are investing more in new models and technologies as a result of governments around the world establishing aggressive targets for EV penetration and offering incentives for EV adoption. Additionally, by shielding EV batteries from outside impacts, temperature changes, and environmental factors, battery housings are essential to maintaining the safety, effectiveness, and performance of these batteries. With the increasing popularity of high-performance electric vehicles (EVs), like sports cars and commercial vehicles, creative designs for battery housing are needed to meet strict crash safety regulations, improve thermal management, and accommodate larger battery packs.
High manufacturing process and advanced material costs
The cost of manufacturing battery housing is greatly increased by the use of sophisticated materials like carbon fiber, aluminum, and high-performance composites. These materials are chosen because they are strong, lightweight, and have the ability to regulate heat; however, their procurement and processing costs are high. A significant obstacle for manufacturers is the high costs, particularly in price-sensitive markets like consumer electronics and entry-level electric vehicles. Furthermore, adopting these cutting-edge materials may prove challenging for small-scale manufacturers or those with narrow profit margins, which will hinder their capacity to compete with larger firms that can afford to invest in state-of-the-art technology.
Developments in manufacturing technologies and material science
There are numerous opportunities to create new and better battery housings owing to advancements in material science and manufacturing technologies. Advanced materials such as graphene, carbon nanotubes, and high-strength polymers, for example, can be used to create housings that are impact-resistant and lightweight while still providing excellent thermal management. These materials also enable more efficient and compact designs, which can increase the energy density of battery packs. Moreover, technological developments in automated manufacturing procedures and additive manufacturing (3D printing) can also minimize waste, lower production costs, and speed up the prototyping of new battery housing designs.
Strong price pressure and market competition
There are many competitors in the battery housing market, ranging from large, well-known multinational companies to smaller, niche producers. This creates a highly competitive environment. Companies strive to provide the most affordable solutions in order to increase their market share, which frequently results in price pressure. Given their larger size and access to greater financial resources for marketing, R&D, and research, larger companies may find it difficult to compete with smaller ones. Furthermore, driving down prices and decreasing profit margins for all players can come from the entry of new competitors, particularly those from low-cost areas.
The market for battery housing was significantly impacted by the COVID-19 pandemic, which also caused delays in production and delivery and upset international supply chains. Lockdowns and restrictions caused manufacturing capacities to be reduced and factories to close, while disruptions in the supply chain led to a shortage of raw materials and higher costs. Moreover, along with accelerating changes in consumer behaviour, the pandemic also created obstacles for automotive and industrial applications due to delayed investments and decreased economic activity. On the one hand, the increased demand for personal electronics and home energy solutions drove growth in certain segments.
The Lead-Acid Batteries segment is expected to be the largest during the forecast period
The market for battery housing is expected to be dominated by the lead-acid battery segment. Lead-acid batteries are extensively utilized in numerous applications, such as industrial, automotive, and backup power systems, because of their dependable, affordable, and well-established technology. They are especially preferred in applications where robustness and cost are more important than weight and energy density. Additionally, lead-acid battery housings must be able to withstand mechanical stress and environmental elements like moisture, all the while supporting the comparatively larger size and weight of the battery in comparison to more modern technologies.
The Electric Vehicles (EVs) segment is expected to have the highest CAGR during the forecast period
In the battery housing market, the electric vehicles (EVs) segment is expected to grow at the highest CAGR. The increasing demand from consumers for environmentally friendly transportation, improvements in battery technology, and government policies that support cleaner energy solutions are the main drivers of the EV segment's rapid growth. Modern battery housings that guarantee safety, efficiency, and performance are becoming increasingly important as automakers make significant investments in creating and growing their line-up of electric vehicles. Furthermore, these housings need to be able to hold batteries with a high energy density, provide efficient heat management, and adhere to strict safety regulations.
The market for battery housing is largest in the North American region, as the area is fortunate to have a thriving automotive sector, substantial investments in renewable energy initiatives, and a strong emphasis on technological innovation. Due to the widespread use of lead-acid batteries in conventional automotive and industrial applications as well as the industry's explosive growth in electric vehicles, which necessitates sophisticated battery housing solutions, North America has a robust demand for battery housings. Moreover, the region's market is growing owing to encouraging government policies and incentives that support clean energy and electric mobility, solidifying North America's position as a major player in the global battery housing market.
The battery housing market is expected to grow at the highest CAGR in the Europe region. The region's significant investments in electric cars and renewable energy projects are a result of its strong commitment to environmental sustainability and climate goals, which is fueling its growth. The need for cutting-edge battery technologies and housing solutions is driven by Europe's strict emission and energy efficiency regulations. Additionally, the market is further stimulated by government subsidies and incentives for energy storage systems and environmentally friendly transportation, positioning Europe as a major player with significant room to grow in the battery housing industry.
Key players in the market
Some of the key players in Battery Housing market include Magna International Inc., Hitachi Chemical Co., Ltd., BYD Company Limited, Minth Group, Panasonic Corporation, Constellium SE, Novelis, Inc., SGL Carbon SE, Gestamp Automocion, S.A., Impression Technologies, Thyssenkrupp AG, Covestro AG, SABIC (Saudi Basic Industries Corporation), LG Chem Ltd. and DSM Engineering Materials.
In August 2024, Magna and SKH collaborate to enhance body and chassis operations in India. A strategic agreement between Magna International Inc. and Krishna Group's Metals Division, SKH, has resulted in the creation of SKH M, a new company dedicated to body and chassis operations in India.
In July 2024, Panasonic Corporation announced that its Cold Chain Solutions Company has entered into an agreement with Cooling Solutions S.L. to purchase all the shares of its subsidiary Area Cooling Solutions Sp. z o.o. , a Polish refrigeration equipment manufacturer.
In February 2024, Chinese electric vehicle giant BYD Co. Ltd. has signed a preliminary land purchase agreement to build its first European electric passenger car plant in Szeged, Hungary. BYD didn't disclose how much it would be spending on the new plant. The Chinese firm has operated an electric bus plant in Hungary since 2016 and has said it invested 20 million euro ($21.7 million) to build the bus factory.