PUBLISHER: BIS Research | PRODUCT CODE: 1303037
PUBLISHER: BIS Research | PRODUCT CODE: 1303037
“Global Electric Vehicle (EV) Battery Housing Market to Reach $13.54 Billion by 2032.”
The global electric vehicle battery housing market is projected to reach $13.54 billion by 2032 from $4.01 billion in 2022, growing at a CAGR of 13.14% during the forecast period 2023-2032. The growth in the electric vehicle battery housing market is expected to be driven by growing demand for electric vehicles, charging infrastructure, the need for lightweighting materials, and better range, among others.
Electric vehicle battery housing is a structural component that encloses and protects the battery pack in an electric vehicle. It is also responsible for dissipating heat from the battery pack and preventing the spread of fire in the event of a battery failure. The battery housing is a critical component of an electric vehicle because it protects the battery pack from damage and helps to ensure the safety of the vehicle occupants. It is also important for the thermal management of the battery pack, which helps to improve the performance and lifespan of the battery. The battery housing is made of a variety of materials, including aluminum, steel, and plastic. The choice of material depends on the specific design requirements of the vehicle and the battery pack. It is typically designed to be lightweight, strong, and corrosion resistant. It is also important for the battery housing to be able to dissipate heat effectively. Therefore, it is an important part of the overall safety of an electric vehicle. It helps to prevent the spread of fire in the event of a battery failure and helps to protect the battery pack from damage.
The electric vehicle battery housing market is a rapidly growing market due to the increasing demand for electric vehicles. The battery housing is a critical component of an electric vehicle, as it protects the battery pack from damage and helps to dissipate heat. The major players in the electric vehicle battery housing market are ThyssenKrupp AG, SGL Carbon, Nemak, Novelis Inc., Constellium SE, and Covestro AG, among others These companies are focusing on developing innovative battery housing solutions to meet the increasing demand for electric vehicles.
The industrial impact of the electric vehicle battery housing market is significant. The market is growing rapidly due to the increasing demand for electric vehicles. This is driving growth in the automotive, electronics, and metal industries. The automotive industry is the largest consumer of electric vehicle battery housings. The demand for electric vehicles is increasing due to the rising concerns about environmental pollution and the increasing availability of government incentives for electric vehicles. This is expected to drive growth in the automotive industry, which is, in turn, driving growth in the electric vehicle battery housing market. The electronics industry is also a major consumer of electric vehicle battery housings. The advances in battery technology, such as the development of lithium-ion batteries, are making electric vehicles more affordable and practical. This is driving growth in the electronics industry, which is, in turn, driving growth in the electric vehicle battery housing market. The metal industry is also benefiting from the growth of the electric vehicle battery housing market. The battery housings are made of a variety of metals, including aluminum, steel, and plastic. The demand for these metals is increasing due to the growth of the electric vehicle battery housing market.
The industrial impact of the electric vehicle battery housing market is significant. The market is growing rapidly and is driving growth in the automotive, electronics, and metal industries. This is expected to continue in the coming years as the demand for electric vehicles continues to increase.
Based on cell format, prismatic cells dominate the electric vehicle battery housing market because they have a higher energy density, flexible design, better thermal management, and are becoming more cost-effective. They are also less likely to swell, easier to stack and connect, and less likely to be damaged in a crash than cylindrical cells. These advantages make prismatic cells the preferred cell type for electric vehicles.
Based on vehicle type, the passenger vehicles segment dominates the electric vehicle battery housing market because passenger vehicles are the most popular type of electric vehicle. This is due to a number of factors, including the fact that passenger vehicles are more affordable than other types of electric vehicles, and they offer a more comfortable and convenient driving experience. The passenger vehicles segment is expected to grow at a faster rate than other segments in the electric vehicle battery housing market due to the increasing demand for electric vehicles in the passenger car market. In 2022, passenger vehicles accounted for over 70% of all electric vehicles sold worldwide. The average price of an electric passenger car is significantly lower than the average price of an electric commercial vehicle or bus. Electric passenger cars are typically quieter and smoother than other types of electric vehicles, and they offer a more spacious and comfortable interior. Additionally, the International Energy Agency (IEA) predicts that the global market for electric passenger vehicles will grow from 6.6 million vehicles in 2022 to 22.3 million vehicles in 2030. As a result, the passenger vehicles segment is expected to continue dominating the electric vehicle battery housing market in the coming years.
Based on material type, the aluminum segment is expected to dominate the electric vehicle battery housing market because aluminum is a lightweight, strong, and corrosion-resistant material that is well-suited for use in battery housings. Aluminum is also relatively inexpensive, which makes it a cost-effective option for battery housing manufacturers. In addition, aluminum is recyclable, which makes it a sustainable choice for battery housings. The recycling of aluminum requires less energy than the production of new aluminum, which helps to reduce the environmental impact of electric vehicles. As the demand for electric vehicles continues to grow, the demand for aluminum battery housings is expected to grow as well. This is because aluminum is a well-suited material for battery housings, and it is a cost-effective and sustainable option.
The lithium-ion battery segment is expected to dominate the electric vehicle battery housing market because lithium-ion batteries are the most widely used type of battery in electric vehicles. This is due to a number of factors, including their high energy density, long lifespan, and relatively low cost. In addition, lithium-ion batteries are becoming increasingly popular in electric vehicles as they become more efficient and affordable. This is expected to drive the demand for lithium-ion battery housings, as these batteries need to be protected from the elements and from damage.
Based on component type, the bottom cover segment is expected to dominate the electric vehicle battery housing market because it is the most structurally important part of battery housing. The bottom cover provides structural support for the battery pack and protects it from other harsh elements. It also helps to dissipate heat from the battery pack and prevents it from overheating. Moreover, the bottom cover is typically made from a strong and durable material, such as aluminum or steel. This makes it more resistant to damage than other parts of the battery housing.
Based on region, Asia-Pacific and Japan region is expected to dominate the electric vehicle battery housing market due to a number of factors, including:
The market for electric vehicle battery housings is being driven by the increasing demand for electric vehicles, rising environmental concerns, government incentives, and advances in EV battery technology. As the global electric vehicle market continues to grow, so will the demand for battery housings. These products are essential for the safe and efficient operation of electric vehicles, and they are also becoming more affordable as battery technology improves. There is a growing awareness of the need to reduce pollution, and electric vehicles are seen as a way to do this. Battery housings are essential for the safe and efficient operation of electric vehicles, which is anticipated to drive the demand for these products. Electric vehicles produce zero emissions, which is a major advantage over traditional gasoline-powered vehicles. This is expected to drive the demand for electric vehicles and in turn, the demand for battery housings.
Many governments are providing incentives for the adoption of electric vehicles, and this is also driving the demand for battery housing. These incentives make electric vehicles more affordable for consumers, and this is increasing the demand for these vehicles. For example, the U.S. government offers a tax credit of up to $7,500 for the purchase of an electric vehicle. This tax credit is a major incentive for consumers, and it is expected to drive the demand for electric vehicles.
The market for electric vehicle battery housings is facing a number of challenges, including the high cost of materials, lack of standardization, demand volatility, and competition from other materials. These challenges are making it difficult for manufacturers to produce battery housings that are affordable, compatible, and in demand. The materials used to manufacture battery housings, such as aluminum and steel, are relatively expensive. This is a major challenge for the market, as it can make battery housings a major cost component for electric vehicles.
Also, there is currently no standard for electric vehicle battery housings. This can make it difficult for manufacturers to design and produce battery housings that are compatible with different electric vehicles.
The market for electric vehicle battery housings is expected to grow significantly in the coming years, driven by the increasing demand for electric vehicles and the development of new battery technologies.
Some of the key market opportunities and trends include:
The companies that are profiled have been selected based on inputs gathered from primary experts and analyzing company coverage, product portfolio, and market penetration.
|
|