PUBLISHER: Grand View Research | PRODUCT CODE: 1609964
PUBLISHER: Grand View Research | PRODUCT CODE: 1609964
The U.S. automated and closed cell therapy processing systems market size is anticipated to reach USD 1.87 billion by 2030, growing at a CAGR of 19.41% from 2025 to 2030, according to a new report by Grand View Research, Inc. Growing emphasis on regenerative medicines and cell therapies, operational superiority of automated systems over manual processing, and extensively increasing technological advancements are some of the major factors driving the growth of the market.
The growing awareness about regenerative medicine is expected to drive the demand for cell therapies, eventually driving the need for automated and closed-cell therapy processing systems and fueling market growth. For instance, in September 2024, Arsenal Biosciences completed a USD 325 million Series C funding round, which was oversubscribed. This funding will help the company advance its CAR T-cell therapies for solid tumors. Existing investors supported the company, including the Parker Institute for Cancer Immunotherapy, SoftBank Vision Fund 2, Bristol-Myers Squibb, Westlake Village BioPartners, Kleiner Perkins, Byers Capital, and Hitachi Ventures.
The COVID-19 pandemic underscored the critical need for scalable, resilient manufacturing in cell therapies, emphasizing automated systems' role in ensuring consistent, repeatable quality processes amid rising demand for therapeutics. Automation helps companies maintain production standards when faced with workforce constraints, making it essential for current and anticipated therapeutic needs. The increased adoption of automated systems highlighted the technology's role in establishing reliable, high-quality cell therapy manufacturing.
Despite these advancements, the pandemic also negatively affected the U.S. automated and closed-cell therapy processing systems market. Global supply chain disruptions caused delays in production and distribution, limiting the ability to maintain steady supply lines for essential equipment and materials. Resources were also redirected toward COVID-19 treatments, pausing certain cell therapy projects and slowing innovation. As a result, some development and manufacturing timelines for cell therapies were extended, impacting both research and commercialization efforts in the short term.
Moreover, many ongoing clinical trials coupled with the increasing support from government bodies to accelerate the R&D of cell therapy are major drivers of the U.S. market. For instance, in October 2024, New York launched the ambitious BioGenesis Park project on Long Island, supported by a USD 430 million investment. This facility aims to be a major hub for cell and gene therapy innovation, driven by a USD 150 million state investment and partnerships with local organizations. Such initiatives are expected to boost the adoption of automated systems for cell therapy manufacturing.
However, as the technology is relatively new, it requires a deep understanding of the process and a well-articulated strategy to achieve desired outcomes. Furthermore, providing enough data for the system to understand the process is necessary. After this step, one needs to understand process control for automation. This overall progression requires skilled manpower and high-end devices. There is a shortage of compatible hardware platforms that can help achieve automation in cell therapy processes. The need for extensive capital is expected to impede market growth to a certain extent.