PUBLISHER: Grand View Research | PRODUCT CODE: 1553530
PUBLISHER: Grand View Research | PRODUCT CODE: 1553530
The global induced pluripotent stem cells market size is expected to reach USD 3.31 billion by 2030, registering to grow at a CAGR of 10.21% from 2024 to 2030 according to a new report by Grand View Research, Inc. The market for induced pluripotent stem cells (iPSC) is expanding quickly. The ability of induced pluripotent stem cells to generate any cell or tissue essential by the body to fight or combat illnesses such as leukemia, spinal cord injury, cardiovascular disease, and diabetes is the primary reason for their utilization.
Other factors driving market expansion include higher research funding, an increase in the number of genomics initiatives, and a surge in the application of genome engineering in personalized drugs. This has accelerated the adoption of iPSC, resulting in the market's profitable revenue growth. For instance, in October 2020, Axxam S.p.A. & FUJIFILM Cellular Dynamics, Inc. announced a strategic partnership to advance the drug discovery process. Through the use of the most cutting-edge drug discovery techniques to enable target evaluation, High-Throughput Screening (HTS), & High-Content Screening, the partnership will give drug development researchers along with scientists access to an integrative platform of hiPSC-based assays.
Investments in healthcare development and research have expanded significantly in recent years, and this trend is projected to have a significant impact on induced pluripotent stem cell demand over the forecast period. The expanding spectrum of human iPSC cell lines' applications in precision medicine and the growing emphasis on stem cell therapeutic applications are predicted to be important factors driving induced pluripotent stem cell market expansion. For instance, in March 2021, Sana Biotechnology, Inc. received authorization to use FUJIFILM Cellular Dynamics' iPSC platform for the creation of commercially available cell therapies, according to a joint statement from both companies. Cell therapies can improve, fix, or substitute human biology, including cells, tissues, and organs.
The rise in research activity during the COVID-19 pandemic also enhanced iPSC-based research. In addition, scientists' ongoing efforts to discover novel therapies and treatments to manage the SARS CoV-2 infection have increased the need for iPSCs as research tools. Furthermore, induced pluripotent stem cells can create organoids or organ models that are physiologically equivalent, thus they can be utilized to study the pathophysiology of viral infection in humans. Thus, propelling the industry growth.
Furthermore, the government and commercial sectors are expanding funding along with growing industry that focuses on various scientific activities linked to iPSCs, and people are becoming more aware of stem cells through various organizations. However, challenges such as the high cost of cell reprograming, ethical concerns, and lengthy processes are inhibiting the growth of the induced pluripotent stem cell industry to a certain extend Moreover, low efficiency, potential tumor risk, and insufficient programming are other concerns restricting the expansion of the iPSC market.