PUBLISHER: Grand View Research | PRODUCT CODE: 1529715
PUBLISHER: Grand View Research | PRODUCT CODE: 1529715
The global induced pluripotent stem cells production market size is expected to reach USD 2.76 billion by 2030, registering a CAGR of 9.44% from 2024 to 2030, according to a new report by Grand View Research, Inc. The increase in demand for induced pluripotent stem cells (iPSCs) in comparison to Embryonic Stem Cells (ESCs) has offered a significant drive to the market. Advantages such as no stem cell-related ethical issues, personalized treatment, and flexibility during cell-based research have created a favorable scenario for market growth. In addition, the prevalence of chronic disorders is also driving the growth of the induced pluripotent stem cells production market, as conditions like heart disease, stroke, diabetes, and many more can be treated by utilizing iPSCs-mediated therapy. For example, according to the International Diabetes Federation (IDF), 537 million people are already living with diabetes in 2021.
The rising research activities during COVID-19 pandemic have positively impacted the market. The pandemic fueled research in many fields as the SARS CoV-2 infection resulted in many diseases in the patients. For instance, in April 2021, researchers from USA stated that up to 25% of COVID-19 patients suffered cardiac dysfunction. Through their research article, they demonstrated the pathogenesis via exposure of iPSCs-derived cardiac cells to SARS CoV-2, and similar alterations were confirmed from human autopsy specimens of the patients. Such insights allow the use of induced pluripotent stem cells (iPSCs) as drug or therapy development platforms and their utilization in the management of the long-term effects of COVID-19.
Induced pluripotent stem cells are cells that are derived from adult somatic cells and then further reprogrammed to obtain the pluripotency as that of ESCs. These iPSCs are proving to be an ethically uncomplicated alternative for research that involves ESCs. The derivation of the ESCs is associated with the destruction of an embryo at the blastocyte stage, which has led to a maximum number of ethical debates. However, induced pluripotent stem cells have solved the ethical issue over the destruction of human embryos in research by involving only the genetic reprogramming of somatic cells. This has propelled the market growth and resulted in numerous applications including drug discovery, disease modeling, toxicology testing, and many others. For instance, in August 2021, Fate Therapeutics announced the treatment of the first patient with FT819 during clinical trials. FT819 is an engineered CAR-T cell therapy that is derived from iPSCs. Also, the rising focus of the research community on exploring applications of induced pluripotent stem cells in regenerative medicine due to their unique characteristics such as differential potential, self-renewable, immunomodulatory properties, and others; is set to drive the market expansion.