PUBLISHER: Grand View Research | PRODUCT CODE: 1433658
PUBLISHER: Grand View Research | PRODUCT CODE: 1433658
The global viral vector and plasmid DNA manufacturing market size is anticipated to reach USD 19.5 billion by 2030 and it is projected to grow at a CAGR of 20.2% from 2024 - 2030, according to a new report by Grand View Research, Inc. With the increasing demand for plasmid DNA and viral vectors for gene therapy, industry leaders have launched new technologies to boost plasmid DNA manufacturing. For instance, in April 2018, GE Healthcare Life Sciences introduced KUBio BSL 2, a prefabricated, modular bioprocessing facility for the production of oncolytic viruses, cell and gene treatments, and immunizations based on viral vectors.
With the increase in investments in cell and gene therapy research space, there is unprecedented demand for viral vectors in the market. Owing to this, various organizations are providing funds to accelerate developments in the manufacturing processes for these vectors. For instance, in September 2019, Next Generation Manufacturing Canada provided USD 1.89 million to a consortium led by iVexSol Canada. This fund was provided for the development of an advanced manufacturing process for lentiviral vectors. 2iVexSol Canada is a vector manufacturing company that has collaborated with several companies to develop an advanced LVV manufacturing platform.
Moreover, the major companies operating in this market, such as Thermo Fisher Scientific, QIAGEN NV, Agilent Technologies, Takara Bio, Inc., and Oxford Biomedica, are focusing on developing new gene delivery platforms. These companies are making huge investments to scale up the production of biological gene delivery systems to meet the increasing market demand. For instance, in May 2020, Takara Bio, Inc. completed the Center for Gene and Cell Therapy Processing II (CGCPII) construction in Shiga, Japan. This center is an addition to its GMP viral vector production facility. Similarly, in May 2020, Thermo Fisher Scientific also invested USD 180 million to scale up its viral vector manufacturing capacity twofold. Such increasing initiatives are anticipated to propel market growth in the forecast period.
Furthermore, large-scale production of viral vectors is facing challenges in upstream and downstream processing. In upstream processes, the method used for viral vector production is one of the major hurdles for manufacturers. Reproduction of adherent cell cultures at a large scale is a key concern that needs to be addressed. Thus, researchers are trying to grow these cells using large bioreactors. In addition, there is a need for a better understanding of the purity of these vectors in downstream processing.