Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1706269

Cover Image

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1706269

The Global Market for Sustainable Chemical Feedstocks 2025-2035

PUBLISHED:
PAGES: 1,007 Pages, 455 Tables, 149 Figures
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF (Single User License)
USD 1584

Add to Cart

The chemical industry is undergoing a transformative shift towards sustainable feedstocks, driven by environmental challenges and the drive to decarbonize industrial processes. The market for next-generation chemical feedstocks is experiencing significant growth, with production capacity projected to expand at a robust 16% Compound Annual Growth Rate from 2025 to 2035. This evolution is propelled by multiple factors, including stringent regulatory pressures, corporate sustainability commitments, and the growing demand for circular economy solutions. Companies are exploring diverse renewable carbon sources such as lignocellulosic biomass (wood and agricultural waste), non-lignocellulosic biomass (algae and agricultural residues), municipal waste, and carbon dioxide utilization. Technological innovations are making these alternatives increasingly viable, with breakthrough methods emerging for lignin extraction, BTX production from waste, and CO2 conversion into valuable chemical intermediates.

The transition to sustainable chemical feedstocks represents a massive economic and technological undertaking, requiring an estimated cumulative investment between US$440 billion and US$1 trillion through 2040, and potentially reaching US$1.5 trillion to US$3.3 trillion by 2050. While economic challenges persist-including higher production costs compared to fossil-based alternatives and market sensitivity to crude oil prices-the potential rewards are substantial. The sustainable feedstocks market promises to revolutionize chemical production across multiple sectors, including specialty chemicals, polymers, plastics, food additives, cosmetics, and pharmaceuticals. Success will depend on developing efficient conversion technologies, ensuring sustainable sourcing practices, creating long-term supply agreements, and navigating complex regulatory environments. As brands and consumers increasingly demand environmentally responsible solutions, next-generation feedstocks offer a critical pathway to reducing industrial carbon emissions, transforming waste into valuable resources, and supporting a more sustainable industrial ecosystem that can meet the growing global demand for eco-friendly chemical products.

"The Global Market for Sustainable Chemical Feedstocks 2025-2035" provides an in-depth analysis of the emerging sustainable chemical feedstocks market, covering the critical transformation of the global chemical industry towards more environmentally friendly and circular solutions. The report examines the technological, economic, and regulatory landscape driving the shift from traditional fossil-based feedstocks to innovative, sustainable alternatives.

Report contents include:

  • Comprehensive analysis of sustainable chemical feedstock technologies
  • Global market research covering G20 markets
  • Detailed examination of technological innovations, market dynamics, and future projections
  • Market Drivers and Trends
  • Feedstock Evolution
  • Detailed analysis of emerging sustainable feedstock sources:
    • Biomass (lignocellulosic and non-lignocellulosic)
    • Municipal and agricultural waste
    • CO2 utilization
    • Renewable hydrogen
    • Waste valorization technologies
  • Technological Innovations:
    • Green chemistry principles
    • Circular economy approaches
    • Advanced recycling technologies
    • Electrification of chemical processes
    • Digitalization and AI in chemical design
    • Synthetic biology and metabolic engineering
  • End-use Market Analysis:
    • Sustainable agriculture chemicals
    • Green cosmetics and personal care
    • Sustainable packaging
    • Eco-friendly paints and coatings
    • Alternative fuels and lubricants
    • Pharmaceuticals and healthcare
    • Advanced materials for 3D printing
  • Investment trends in green chemistry
  • Cost competitiveness analysis
  • New circular economy business models
  • Market dynamics and consumer preferences
  • Emerging Technologies and Future Outlook
    • Convergence of bio, nano, and information technologies
    • Quantum computing in chemical research
    • Space-based chemical manufacturing
    • Artificial photosynthesis
    • Personalized on-demand chemical manufacturing
  • Quantitative Market Projections
    • Forecast of chemical production capacity from next-generation feedstocks
    • Estimated growth rates and market valuations
    • Investment requirements for industrial transformation
    • Projected CO2 emissions reductions
  • Company Profiles and Competitive Landscape-profiles of over 1,000 key players in the sustainable chemicals market, analyzing their strategies, products, and market positions. Companies profiled include Aanika Biosciences, ACCUREC-Recycling GmbH, Aduro Clean Technologies, Aemetis, Afyren, Agra Energy, Agilyx, Air Company, Aircela, Algenol, Allozymes, Alpha Biofuels, AM Green, Amyris, Anellotech, Andritz, APChemi, Apeiron Bioenergy, Aperam BioEnergia, Applied Research Associates (ARA), Aralez Bio, Arcadia eFuels, Ascend Elements, ASB Biodiesel, Atmonia, Avalon BioEnergy, Avantium, Avioxx, BANiQL, BASF, BBCA Biochemical & GALACTIC Lactic Acid, BBGI, BDI-BioEnergy International, BEE Biofuel, Benefuel, Bio2Oil, BioBTX, Bio-Oils, Biofibre GmbH, Bioform Technologies, Biofine Technology, Biofy, BiogasClean, Biolive, BIOD Energy, Biojet, Biokemik, BIOLO, BioLogiQ, Inc., Biome Bioplastics, Biomass Resin Holdings Co., Ltd., Biomatter, BIO-FED, BIO-LUTIONS International AG, Bioplastech Ltd, BioSmart Nano, BIOTEC GmbH & Co. KG, Biovectra, Biovox GmbH, BlockTexx Pty Ltd., Bloom Biorenewables, Blue BioFuels, Blue Ocean Closures, BlueAlp Technology, Bluepha Beijing Lanjing Microbiology Technology Co., Ltd., BOBST, Borealis AG, Braskem, Braven Environmental, Brightmark Energy, Brightplus Oy, bse Methanol, BTG Bioliquids, Bucha Bio, Business Innovation Partners Co., Ltd., Buyo, Byogy Renewables, C1 Green Chemicals, Caphenia, Carbiolice, Carbios, Carbonade, CarbonBridge, Carbon Collect, Carbon Engineering, Carbon Infinity, Carbon Neutral Fuels, Carbon Recycling International, Carbon Sink, Carbyon, Cardia Bioplastics Ltd., CARAPAC Company, Cargill, Cascade Biocatalysts, Cass Materials Pty Ltd, Cassandra Oil, Casterra Ag, Celanese Corporation, Celtic Renewables, Cellugy, CelluForce, Cellutech AB (Stora Enso), Cereal Process Technologies (CPT), CERT Systems, CF Industries Holdings, Chaincraft, Chemkey Advanced Materials Technology (Shanghai) Co., Ltd., Chemol Company (Seydel), Chempolis, Chitose Bio Evolution, Chiyoda, Circla Nordic, Cirba Solutions, CJ Biomaterials, Inc., CleanJoule, Climeworks, Coastgrass ApS, CNF Biofuel, Concord Blue Engineering, Constructive Bio, Cool Planet Energy Systems, Corumat, Inc., Corsair Group International, Coval Energy, Crimson Renewable Energy, Cruz Foam, Cryotech, CuanTec Ltd., Cyclic Materials, C-Zero, Daicel Polymer Ltd., Daio Paper Corporation, Danimer Scientific, D-CRBN, Debut Biotechnology, DIC Corporation, DIC Products, Inc., Diamond Green Diesel, Dimensional Energy, Dioxide Materials, Dioxycle, DKS Co. Ltd., Domsjo Fabriker, Dow, Inc., DuFor Resins B.V., DuPont, Earthodic Pty Ltd., EarthForm, EcoCeres, Eco Environmental, Eco Fuel Technology, Ecomann Biotechnology Co., Ltd., Ecoshell, Electro-Active Technologies, Eligo Bioscience, Enim, Enginzyme AB, Enzymit, Erebagen, EV Biotech, eversyn, Evolutor, FabricNano, FlexSea, Floreon, Gevo, Ginkgo Bioworks, Heraeus Remloy, HyProMag, Hyfe, Industrial Microbes, Invizyne Technologies, JPM Silicon GmbH, LanzaTech, Librec AG, Lygos, MagREEsource, Mammoth Biosciences, MetaCycler BioInnovations, Mi Terro, NeoMetals, New Energy Blue, Noveon Magnetics, Novozymes A/S, NTx, Origin Materials, Ourobio, OxFA, PeelPioneers, Phoenix Tailings, PlantSwitch, Posco, Pow.bio, Protein Evolution, PeelPioneers, Re:Chemistry, REEtec, Rivalia Chemical, Samsara Eco, SiTration, Solugen, Sonichem, Straw Innovations, Sumitomo and Summit Nanotech, Synthego, Taiwan Bio-Manufacturing Corp. (TBMC), Teijin Limited, Twist Bioscience, Uluu, Van Heron Labs, Verde Bioresins, Versalis, Xampla and more....

The report offers strategic guidance for:

  • Chemical industry executives
  • Investors and venture capitalists
  • Research and development professionals
  • Policymakers
  • Sustainability officers

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. The Need for a New Era in the Chemical Industry
  • 1.2. Defining the New Era of Chemicals
  • 1.3. Global Drivers and Trends
    • 1.3.1. Consumer and brand demand for sustainable products
    • 1.3.2. Government Regulation
    • 1.3.3. Carbon taxation
    • 1.3.4. Costs
      • 1.3.4.1. Oil Prices
      • 1.3.4.2. Process Costs
      • 1.3.4.3. Capital Costs
  • 1.4. The Changing Landscape of the Chemical Industry
    • 1.4.1. Historical Context: From Coal to Oil to Renewables
    • 1.4.2. Current State of the Global Chemical Industry
    • 1.4.3. Environmental Challenges and Regulatory Pressures
    • 1.4.4. Shifting Consumer Demands and Market Dynamics
    • 1.4.5. The Role of Digitalization and Industry 4.0
  • 1.5. Emerging and Transforming Markets in the New Era of Chemicals
    • 1.5.1. Sustainable Agriculture Chemicals
    • 1.5.2. Green Cosmetics and Personal Care
    • 1.5.3. Sustainable Packaging
    • 1.5.4. Eco-friendly Paints and Coatings
    • 1.5.5. Alternative Fuels and Lubricants
    • 1.5.6. Pharmaceuticals and Healthcare
    • 1.5.7. Water Treatment and Purification
    • 1.5.8. Carbon Capture and Utilization Products
    • 1.5.9. Advanced Materials for 3D Printing
    • 1.5.10. Sustainable Mining and Metallurgy

2. FEEDSTOCKS

  • 2.1. Sustainable Feedstocks: The Foundation of the New Era
  • 2.2. Overview of Sustainable Feedstock Options
  • 2.3. Biomass as a Chemical Feedstock
    • 2.3.1. Types of Biomass and Their Chemical Compositions
    • 2.3.2. Pretreatment and Conversion Technologies
    • 2.3.3. Challenges in Scaling Up Biomass Utilization
    • 2.3.4. Lignocellulosic feedstocks
      • 2.3.4.1. Wood-based feedstocks
      • 2.3.4.2. Agricultural waste
      • 2.3.4.3. Energy crops
    • 2.3.5. Non-lignocellulosic feedstocks
      • 2.3.5.1. Agricultural waste
      • 2.3.5.2. Algae based feedstocks
  • 2.4. CO2 as a Carbon Source
    • 2.4.1. CO2 Capture Technologies
    • 2.4.2. Chemical Conversion Pathways for CO2
    • 2.4.3. Economic and Technical Barriers to CO2 Utilization
  • 2.5. Waste Valorization
    • 2.5.1. Municipal Solid Waste as a Feedstock
    • 2.5.2. Industrial Waste Streams and By-products
    • 2.5.3. Plastic Waste Recycling and Upcycling
  • 2.6. Renewable (Green) Hydrogen
    • 2.6.1. Electrolysis Technologies
    • 2.6.2. Integration of Renewable Energy in Hydrogen Production
    • 2.6.3. Hydrogen's Role in Chemical Synthesis
  • 2.7. Feedstock Transition Pathways for Industry

3. GREEN CHEMISTRY PRINCIPLES AND APPLICATIONS

  • 3.1. The 12 Principles of Green Chemistry
  • 3.2. Atom Economy and Step Economy in Synthesis
  • 3.3. Solvent Reduction and Green Solvents
    • 3.3.1. Water as a Reaction Medium
    • 3.3.2. Ionic Liquids and Deep Eutectic Solvents
    • 3.3.3. Supercritical Fluids in Chemical Processes
  • 3.4. Catalysis for Green Chemistry
    • 3.4.1. Biocatalysis and Enzyme Engineering
    • 3.4.2. Heterogeneous Catalysis Advancements
    • 3.4.3. Photocatalysis and Electrocatalysis
  • 3.5. Green Metrics and Life Cycle Assessment in Chemistry
  • 3.6. Feedstock-Specific Green Chemistry Approaches
    • 3.6.1. Green Chemistry Principles Applied to Next-Generation Feedstocks

4. CIRCULAR ECONOMY IN THE CHEMICAL INDUSTRY

  • 4.1. Principles of Circular Economy
  • 4.2. Design for Circularity in Chemical Products
  • 4.3. Chemical Recycling Technologies
    • 4.3.1. Applications
    • 4.3.2. Pyrolysis
      • 4.3.2.1. Non-catalytic
      • 4.3.2.2. Catalytic
        • 4.3.2.2.1. Polystyrene pyrolysis
        • 4.3.2.2.2. Pyrolysis for production of bio fuel
        • 4.3.2.2.3. Used tires pyrolysis
          • 4.3.2.2.3.1. Conversion to biofuel
        • 4.3.2.2.4. Co-pyrolysis of biomass and plastic wastes
      • 4.3.2.3. Companies and capacities
    • 4.3.3. Gasification
      • 4.3.3.1. Technology overview
        • 4.3.3.1.1. Syngas conversion to methanol
        • 4.3.3.1.2. Biomass gasification and syngas fermentation
        • 4.3.3.1.3. Biomass gasification and syngas thermochemical conversion
      • 4.3.3.2. Companies and capacities (current and planned)
    • 4.3.4. Dissolution
      • 4.3.4.1. Technology overview
      • 4.3.4.2. Companies and capacities (current and planned)
    • 4.3.5. Depolymerisation
      • 4.3.5.1. Hydrolysis
        • 4.3.5.1.1. Technology overview
      • 4.3.5.2. Enzymolysis
        • 4.3.5.2.1. Technology overview
      • 4.3.5.3. Methanolysis
        • 4.3.5.3.1. Technology overview
      • 4.3.5.4. Glycolysis
        • 4.3.5.4.1. Technology overview
      • 4.3.5.5. Aminolysis
        • 4.3.5.5.1. Technology overview
      • 4.3.5.6. Companies and capacities (current and planned)
    • 4.3.6. Other advanced chemical recycling technologies
      • 4.3.6.1. Hydrothermal cracking
      • 4.3.6.2. Pyrolysis with in-line reforming
      • 4.3.6.3. Microwave-assisted pyrolysis
      • 4.3.6.4. Plasma pyrolysis
      • 4.3.6.5. Plasma gasification
      • 4.3.6.6. Supercritical fluids
  • 4.4. Upcycling of Chemical Waste
  • 4.5. Circular Business Models in the Chemical Sector
  • 4.6. Challenges and Opportunities in Implementing Circularity
  • 4.7. Companies

5. ELECTRIFICATION OF CHEMICAL PROCESSES

  • 5.1. The Role of Renewable Electricity in Chemical Production
  • 5.2. Electrochemical Synthesis
    • 5.2.1. Electroorganic Synthesis
    • 5.2.2. Electrochemical CO2 Reduction
    • 5.2.3. Electrochemical Nitrogen Fixation
  • 5.3. Plasma Chemistry
  • 5.4. Microwave-Assisted Chemistry
  • 5.5. Integration of Power-to-X Technologies in Chemical Production

6. DIGITALIZATION AND INDUSTRY 4.0 IN CHEMISTRY

  • 6.1. Big Data and Advanced Analytics in Chemical Research
  • 6.2. Artificial Intelligence and Machine Learning Applications
    • 6.2.1. In Silico Design of Molecules and Materials
    • 6.2.2. Process Optimization and Predictive Maintenance
    • 6.2.3. Automated Synthesis and High-Throughput Experimentation
  • 6.3. Digital Twins in Chemical Plant Operations
  • 6.4. Blockchain for Supply Chain Transparency and Traceability
  • 6.5. Cybersecurity Challenges in the Digitalized Chemical Industry

7. ADVANCED MANUFACTURING TECHNOLOGIES

  • 7.1. Continuous Flow Chemistry
    • 7.1.1. Microreactors and Process Intensification
    • 7.1.2. Advantages in Pharmaceuticals and Fine Chemicals
    • 7.1.3. Challenges in Scale-up and Implementation
  • 7.2. Modular and Distributed Manufacturing
  • 7.3. 3D Printing of Chemicals and Materials
    • 7.3.1. Direct Ink Writing and Reactive Printing
    • 7.3.2. Applications in Custom Synthesis and Formulation
  • 7.4. Advanced Process Control and Real-time Monitoring
  • 7.5. Flexible and Adaptable Production Systems

8. BIOREFINING AND INDUSTRIAL BIOTECHNOLOGY

  • 8.1. Biorefinery Concepts and Configurations
    • 8.1.1. Biorefinery Classifications
    • 8.1.2. Biorefinery Configurations
      • 8.1.2.1. Lignocellulosic Biorefinery:
      • 8.1.2.2. Whole-Crop Biorefinery
      • 8.1.2.3. Green Biorefinery
      • 8.1.2.4. Thermochemical Biorefinery
      • 8.1.2.5. Marine Biorefinery
      • 8.1.2.6. Integrated Forest Biorefinery
      • 8.1.2.7. Integration and Process Intensification
  • 8.2. Lignocellulosic Biomass Processing
  • 8.3. Algal Biorefineries
  • 8.4. Upstream Processing
    • 8.4.1. Cell Culture
      • 8.4.1.1. Overview
      • 8.4.1.2. Types of Cell Culture Systems
      • 8.4.1.3. Factors Affecting Cell Culture Performance
      • 8.4.1.4. Advances in Cell Culture Technology
        • 8.4.1.4.1. Single-use systems
        • 8.4.1.4.2. Process analytical technology (PAT)
        • 8.4.1.4.3. Cell line development
  • 8.5. Fermentation
    • 8.5.1. Overview
      • 8.5.1.1. Types of Fermentation Processes
      • 8.5.1.2. Factors Affecting Fermentation Performance
      • 8.5.1.3. Advances in Fermentation Technology
        • 8.5.1.3.1. High-cell-density fermentation
        • 8.5.1.3.2. Continuous processing
        • 8.5.1.3.3. Metabolic engineering
  • 8.6. Downstream Processing
    • 8.6.1. Purification
      • 8.6.1.1. Overview
      • 8.6.1.2. Types of Purification Methods
        • 8.6.1.2.1. Factors Affecting Purification Performance
      • 8.6.1.3. Advances in Purification Technology
        • 8.6.1.3.1. Affinity chromatography
        • 8.6.1.3.2. Membrane chromatography
        • 8.6.1.3.3. Continuous chromatography
  • 8.7. Formulation
    • 8.7.1. Overview
      • 8.7.1.1. Types of Formulation Methods
      • 8.7.1.2. Factors Affecting Formulation Performance
      • 8.7.1.3. Advances in Formulation Technology
        • 8.7.1.3.1. Controlled release
        • 8.7.1.3.2. Nanoparticle formulation
        • 8.7.1.3.3. 3D printing
  • 8.8. Bioprocess Development
    • 8.8.1. Scale-up
      • 8.8.1.1. Overview
      • 8.8.1.2. Factors Affecting Scale-up Performance
      • 8.8.1.3. Scale-up Strategies
    • 8.8.2. Optimization
      • 8.8.2.1. Overview
      • 8.8.2.2. Factors Affecting Optimization Performance
      • 8.8.2.3. Optimization Strategies
  • 8.9. Analytical Methods
    • 8.9.1. Quality Control
      • 8.9.1.1. Overview
      • 8.9.1.2. Types of Quality Control Tests
      • 8.9.1.3. Factors Affecting Quality Control Performance
    • 8.9.2. Characterization
      • 8.9.2.1. Overview
      • 8.9.2.2. Types of Characterization Methods
      • 8.9.2.3. Factors Affecting Characterization Performance
  • 8.10. Scale of Production
    • 8.10.1. Laboratory Scale
      • 8.10.1.1. Overview
      • 8.10.1.2. Scale and Equipment
      • 8.10.1.3. Advantages
      • 8.10.1.4. Disadvantages
    • 8.10.2. Pilot Scale
      • 8.10.2.1. Overview
      • 8.10.2.2. Scale and Equipment
      • 8.10.2.3. Advantages
      • 8.10.2.4. Disadvantages
    • 8.10.3. Commercial Scale
      • 8.10.3.1. Overview
      • 8.10.3.2. Scale and Equipment
      • 8.10.3.3. Advantages
      • 8.10.3.4. Disadvantages
  • 8.11. Mode of Operation
    • 8.11.1. Batch Production
      • 8.11.1.1. Overview
      • 8.11.1.2. Advantages
      • 8.11.1.3. Disadvantages
      • 8.11.1.4. Applications
    • 8.11.2. Fed-batch Production
      • 8.11.2.1. Overview
      • 8.11.2.2. Advantages
      • 8.11.2.3. Disadvantages
      • 8.11.2.4. Applications
    • 8.11.3. Continuous Production
      • 8.11.3.1. Overview
      • 8.11.3.2. Advantages
      • 8.11.3.3. Disadvantages
      • 8.11.3.4. Applications
    • 8.11.4. Cell factories for biomanufacturing
    • 8.11.5. Perfusion Culture
      • 8.11.5.1. Overview
      • 8.11.5.2. Advantages
      • 8.11.5.3. Disadvantages
      • 8.11.5.4. Applications
    • 8.11.6. Other Modes of Operation
      • 8.11.6.1. Immobilized Cell Culture
      • 8.11.6.2. Two-Stage Production
      • 8.11.6.3. Hybrid Systems
  • 8.12. Host Organisms

9. CO2 UTILIZATION TECHNOLOGIES

  • 9.1. Overview
  • 9.2. CO2 non-conversion and conversion technology
  • 9.3. Carbon utilization business models
    • 9.3.1. Benefits of carbon utilization
    • 9.3.2. Market challenges
  • 9.4. Co2 utilization pathways
  • 9.5. Conversion processes
    • 9.5.1. Thermochemical
      • 9.5.1.1. Process overview
      • 9.5.1.2. Plasma-assisted CO2 conversion
    • 9.5.2. Electrochemical conversion of CO2
      • 9.5.2.1. Process overview
    • 9.5.3. Photocatalytic and photothermal catalytic conversion of CO2
    • 9.5.4. Catalytic conversion of CO2
    • 9.5.5. Biological conversion of CO2
    • 9.5.6. Copolymerization of CO2
    • 9.5.7. Mineral carbonation
  • 9.6. CO2-derived products
    • 9.6.1. Fuels
      • 9.6.1.1. Overview
      • 9.6.1.2. Production routes
      • 9.6.1.3. CO2 -fuels in road vehicles
      • 9.6.1.4. CO2 -fuels in shipping
      • 9.6.1.5. CO2 -fuels in aviation
      • 9.6.1.6. Power-to-methane
        • 9.6.1.6.1. Biological fermentation
        • 9.6.1.6.2. Costs
      • 9.6.1.7. Algae based biofuels
      • 9.6.1.8. CO2-fuels from solar
      • 9.6.1.9. Companies
      • 9.6.1.10. Challenges
    • 9.6.2. Chemicals and polymers
      • 9.6.2.1. Polycarbonate from CO2
      • 9.6.2.2. Carbon nanostructures
      • 9.6.2.3. Scalability
      • 9.6.2.4. Applications
        • 9.6.2.4.1. Urea production
        • 9.6.2.4.2. CO2-derived polymers
        • 9.6.2.4.3. Inert gas in semiconductor manufacturing
        • 9.6.2.4.4. Carbon nanotubes
      • 9.6.2.5. Companies
    • 9.6.3. Construction materials
      • 9.6.3.1. Overview
      • 9.6.3.2. CCUS technologies
      • 9.6.3.3. Carbonated aggregates
      • 9.6.3.4. Additives during mixing
      • 9.6.3.5. Concrete curing
      • 9.6.3.6. Costs
      • 9.6.3.7. Market trends and business models
      • 9.6.3.8. Companies
      • 9.6.3.9. Challenges
    • 9.6.4. CO2 Utilization in Biological Yield-Boosting
      • 9.6.4.1. Overview
      • 9.6.4.2. Applications
        • 9.6.4.2.1. Greenhouses
        • 9.6.4.2.2. Algae cultivation
          • 9.6.4.2.2.1. CO2-enhanced algae cultivation: open systems
          • 9.6.4.2.2.2. CO2-enhanced algae cultivation: closed systems
        • 9.6.4.2.3. Microbial conversion
        • 9.6.4.2.4. Food and feed production
      • 9.6.4.3. Companies
  • 9.7. CO2 Utilization in Enhanced Oil Recovery
    • 9.7.1. Overview
      • 9.7.1.1. Process
      • 9.7.1.2. CO2 sources
    • 9.7.2. CO2-EOR facilities and projects
    • 9.7.3. Challenges
  • 9.8. Enhanced mineralization
    • 9.8.1. Advantages
    • 9.8.2. In situ and ex-situ mineralization
    • 9.8.3. Enhanced mineralization pathways
    • 9.8.4. Challenges

10. ADVANCED CATALYSTS FOR SUSTAINABLE CHEMISTRY

  • 10.1. Overview of biocatalyst technology
    • 10.1.1. Biotransformations
    • 10.1.2. Cascade biocatalysis
    • 10.1.3. Co-factor recycling
    • 10.1.4. Immobilization
  • 10.2. Types of biocatalysts
    • 10.2.1. Microorganisms
      • 10.2.1.1. Bacteria
      • 10.2.1.2. Fungi
      • 10.2.1.3. Yeast
      • 10.2.1.4. Archaea
      • 10.2.1.5. Algae
      • 10.2.1.6. Cyanobacteria
    • 10.2.2. Engineered biocatalysts
      • 10.2.2.1. Directed Evolution
      • 10.2.2.2. Rational Design
      • 10.2.2.3. Semi-Rational Design
      • 10.2.2.4. Immobilization
      • 10.2.2.5. Fusion Proteins
    • 10.2.3. Enzymes
      • 10.2.3.1. Detergent Enzymes
      • 10.2.3.2. Food Processing Enzymes
      • 10.2.3.3. Textile Processing Enzymes
      • 10.2.3.4. Paper and Pulp Processing Enzymes
      • 10.2.3.5. Leather Processing Enzymes
      • 10.2.3.6. Biofuel Production Enzymes
      • 10.2.3.7. Animal Feed Enzymes
      • 10.2.3.8. Pharmaceutical and Diagnostic Enzymes
      • 10.2.3.9. Waste Management and Bioremediation Enzymes
      • 10.2.3.10. Agriculture and Crop Improvement Enzymes
    • 10.2.4. Other types
      • 10.2.4.1. Ribozymes
      • 10.2.4.2. DNAzymes
      • 10.2.4.3. Abzymes
      • 10.2.4.4. Nanozymes
      • 10.2.4.5. Organocatalysts
  • 10.3. Production methods and processes
    • 10.3.1. Fermentation
    • 10.3.2. Recombinant DNA technology
    • 10.3.3. ell-Free Protein Synthesis
    • 10.3.4. Extraction from Natural Sources
    • 10.3.5. Solid-State Fermentation
  • 10.4. Emerging technologies and innovations in biocatalysis
    • 10.4.1. Synthetic biology and metabolic engineering
      • 10.4.1.1. Batch biomanufacturing
      • 10.4.1.2. Continuous biomanufacturing
      • 10.4.1.3. Fermentation Processes
      • 10.4.1.4. Cell-free synthesis
    • 10.4.2. Generative biology and Artificial Intelligence (AI)
      • 10.4.2.1. Molecular Dynamics Simulations
      • 10.4.2.2. Quantum Mechanical Calculations
      • 10.4.2.3. Systems Biology Modeling
      • 10.4.2.4. Metabolic Engineering Modeling
    • 10.4.3. Genome engineering
    • 10.4.4. Immobilization and encapsulation techniques
    • 10.4.5. Biomimetics
    • 10.4.6. Nanoparticle-based biocatalysts
    • 10.4.7. Biocatalytic cascades and multi-enzyme systems
    • 10.4.8. Microfluidics
  • 10.5. Companies

11. SYNTHETIC BIOLOGY AND METABOLIC ENGINEERING

  • 11.1. Metabolic engineering
  • 11.2. Gene and DNA synthesis
  • 11.3. Gene Synthesis and Assembly
  • 11.4. Genome engineering
    • 11.4.1. CRISPR
      • 11.4.1.1. CRISPR/Cas9-modified biosynthetic pathways
      • 11.4.1.2. TALENs
      • 11.4.1.3. ZFNs
  • 11.5. Protein/Enzyme Engineering
  • 11.6. Synthetic genomics
    • 11.6.1. Principles of Synthetic Genomics
    • 11.6.2. Synthetic Chromosomes and Genomes
  • 11.7. Strain construction and optimization
  • 11.8. Smart bioprocessing
  • 11.9. Chassis organisms
  • 11.10. Biomimetics
  • 11.11. Sustainable materials
  • 11.12. Robotics and automation
    • 11.12.1. Robotic cloud laboratories
    • 11.12.2. Automating organism design
    • 11.12.3. Artificial intelligence and machine learning
  • 11.13. Bioinformatics and computational tools
    • 11.13.1. Role of Bioinformatics in Synthetic Biology
    • 11.13.2. Computational Tools for Design and Analysis
  • 11.14. Xenobiology and expanded genetic alphabets
  • 11.15. Biosensors and bioelectronics
  • 11.16. Feedstocks
    • 11.16.1. C1. feedstocks
      • 11.16.1.1. Advantages
      • 11.16.1.2. Pathways
      • 11.16.1.3. Challenges
      • 11.16.1.4. Non-methane C1 feedstocks
      • 11.16.1.5. Gas fermentation
    • 11.16.2. C2 feedstocks
    • 11.16.3. Biological conversion of CO2
    • 11.16.4. Food processing wastes
      • 11.16.4.1. Syngas
      • 11.16.4.2. Glycerol
      • 11.16.4.3. Methane
      • 11.16.4.4. Municipal solid wastes
      • 11.16.4.5. Plastic wastes
      • 11.16.4.6. Plant oils
      • 11.16.4.7. Starch
      • 11.16.4.8. Sugars
      • 11.16.4.9. Used cooking oils
      • 11.16.4.10. Green hydrogen production
      • 11.16.4.11. Blue hydrogen production
    • 11.16.5. Marine biotechnology
      • 11.16.5.1. Cyanobacteria
      • 11.16.5.2. Macroalgae
      • 11.16.5.3. Companies

12. GREEN SOLVENTS AND ALTERNATIVE REACTION MEDIA

  • 12.1. Bio-based Solvents
  • 12.2. Switchable Solvents
  • 12.3. Deep Eutectic Solvents (DES)
  • 12.4. Supercritical Fluids in Industrial Applications
  • 12.5. Solvent-free Reactions and Mechanochemistry
  • 12.6. Solvent Selection Tools and Frameworks
  • 12.7. Companies

13. WASTE VALORIZATION AND RESOURCE RECOVERY

  • 13.1. Municipal Solid Waste to Chemicals
  • 13.2. Agricultural and Food Waste Valorization
  • 13.3. Critical Material Extraction Technology
    • 13.3.1. Recovery of critical materials from secondary sources (e.g., end-of-life products, industrial waste)
    • 13.3.2. Critical rare-earth element recovery from secondary sources
    • 13.3.3. Li-ion battery technology metal recovery
    • 13.3.4. Critical semiconductor materials recovery
    • 13.3.5. Critical semiconductor materials recovery
    • 13.3.6. Critical platinum group metal recovery
    • 13.3.7. Critical platinum Group metal recovery
  • 13.4. Wastewater Treatment and Resource Recovery
    • 13.4.1. Bio-based Flocculants and Coagulants
    • 13.4.2. Green Oxidants and Disinfectants
    • 13.4.3. Sustainable Membrane Materials
      • 13.4.3.1. Bio-based polymer membranes
      • 13.4.3.2. Ceramic membranes from recycled materials
      • 13.4.3.3. Self-healing membranes
    • 13.4.4. Advanced Adsorbents for Contaminant Removal
      • 13.4.4.1. Biochar
      • 13.4.4.2. Activated carbon from waste biomass
      • 13.4.4.3. Green zeolites and MOFs (Metal-Organic Frameworks)
    • 13.4.5. Nutrient Recovery Technologies
    • 13.4.6. Resource Recovery from Industrial Wastewater
    • 13.4.7. Bioelectrochemical Systems
    • 13.4.8. Green Solvents in Extraction Processes
    • 13.4.9. Photocatalytic Materials
    • 13.4.10. Biodegradable Chelating Agents
    • 13.4.11. Biocatalysts for Wastewater Treatment
    • 13.4.12. Advanced Adsorption Materials
    • 13.4.13. Sustainable pH Adjustment Chemicals
  • 13.5. Mining Waste Valorization
    • 13.5.1. Bioleaching and Biooxidation
    • 13.5.2. Green Lixiviants for Metal Extraction
    • 13.5.3. Phytomining and Phytoremediation
    • 13.5.4. Sustainable Flotation Chemicals
    • 13.5.5. Electrochemical Recovery Methods
    • 13.5.6. Geopolymers and Mine Tailings Utilization
    • 13.5.7. CO2 Mineralization
    • 13.5.8. Sustainable Remediation Technologies
    • 13.5.9. Waste-to-Energy Technologies
    • 13.5.10. Advanced Separation Techniques
  • 13.6. Companies

14. ENERGY EFFICIENCY AND RENEWABLE ENERGY INTEGRATION

  • 14.1. Energy Efficiency Measures in Chemical Plants
  • 14.2. Heat Recovery and Pinch Analysis
  • 14.3. Renewable Energy Sources in Chemical Production
  • 14.4. Energy Storage Technologies for Process Industries
  • 14.5. Combined Heat and Power (CHP) Systems
  • 14.6. Industrial Symbiosis and Energy Integration

15. SAFETY AND SUSTAINABILITY ASSESSMENT

  • 15.1. Green Chemistry Metrics and Sustainability Indicators
  • 15.2. Life Cycle Assessment (LCA) in Chemical Processes
  • 15.3. Safety by Design Principles
  • 15.4. Risk Assessment and Management in New Chemical Technologies
  • 15.5. Environmental Impact Assessment
  • 15.6. Social and Ethical Considerations in the New Era of Chemicals

16. REGULATIONS AND POLICY

  • 16.1. Global Chemical Regulations and Their Evolution
  • 16.2. Environmental Policies Driving Sustainable Chemistry
  • 16.3. Incentives and Support Mechanisms for Green Chemistry
  • 16.4. Challenges in Regulating Emerging Technologies
  • 16.5. International Cooperation and Harmonization Efforts

17. MARKETS AND PRODUCTS

  • 17.1. Sustainable Materials and Polymers
    • 17.1.1. Bioplastics and Biodegradable Polymers
      • 17.1.1.1. Polylactic acid (Bio-PLA)
        • 17.1.1.1.1. Overview
        • 17.1.1.1.2. Properties
        • 17.1.1.1.3. Applications
        • 17.1.1.1.4. Advantages
        • 17.1.1.1.5. Commercial examples
      • 17.1.1.2. Polyethylene terephthalate (Bio-PET)
        • 17.1.1.2.1. Overview
        • 17.1.1.2.2. Properties
        • 17.1.1.2.3. Applications
        • 17.1.1.2.4. Commercial examples
      • 17.1.1.3. Polytrimethylene terephthalate (Bio-PTT)
        • 17.1.1.3.1. Overview
        • 17.1.1.3.2. Production Process
        • 17.1.1.3.3. Properties
        • 17.1.1.3.4. Applications
        • 17.1.1.3.5. Commercial examples
      • 17.1.1.4. Polyethylene furanoate (Bio-PEF)
        • 17.1.1.4.1. Overview
        • 17.1.1.4.2. Properties
        • 17.1.1.4.3. Applications
        • 17.1.1.4.4. Commercial examples
      • 17.1.1.5. Bio-PA
        • 17.1.1.5.1. Overview
        • 17.1.1.5.2. Properties
        • 17.1.1.5.3. Commercial examples
      • 17.1.1.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters
        • 17.1.1.6.1. Overview
        • 17.1.1.6.2. Properties
        • 17.1.1.6.3. Applications
        • 17.1.1.6.4. Commercial examples
      • 17.1.1.7. Polybutylene succinate (PBS) and copolymers
        • 17.1.1.7.1. Overview
        • 17.1.1.7.2. Properties
        • 17.1.1.7.3. Applications
        • 17.1.1.7.4. Commercial examples
      • 17.1.1.8. Polypropylene (Bio-PP)
        • 17.1.1.8.1. Overview
        • 17.1.1.8.2. Properties
        • 17.1.1.8.3. Applications
        • 17.1.1.8.4. Commercial examples
      • 17.1.1.9. Polyhydroxyalkanoates (PHA)
        • 17.1.1.9.1. Properties
        • 17.1.1.9.2. Applications
        • 17.1.1.9.3. Commercial examples
      • 17.1.1.10. Starch-based blends
        • 17.1.1.10.1. Overview
        • 17.1.1.10.2. Properties
        • 17.1.1.10.3. Applications
        • 17.1.1.10.4. Commercial examples
      • 17.1.1.11. Cellulose
        • 17.1.1.11.1. Feedstocks
      • 17.1.1.12. Microfibrillated cellulose (MFC)
        • 17.1.1.12.1. Properties
      • 17.1.1.13. Nanocellulose
        • 17.1.1.13.1. Cellulose nanocrystals
          • 17.1.1.13.1.1. Applications
        • 17.1.1.13.2. Cellulose nanofibers
          • 17.1.1.13.2.1. Applications
            • 17.1.1.13.2.1.1. Reinforcement and barrier
            • 17.1.1.13.2.1.2. Biodegradable food packaging foil and films
            • 17.1.1.13.2.1.3. Paperboard coatings
        • 17.1.1.13.3. Bacterial Nanocellulose (BNC)
          • 17.1.1.13.3.1. Applications in packaging
          • 17.1.1.13.3.2. Commercial examples
      • 17.1.1.14. Protein-based bioplastics in packaging
        • 17.1.1.14.1. Feedstocks
        • 17.1.1.14.2. Commercial examples
      • 17.1.1.15. Alginate
        • 17.1.1.15.1. Overview
        • 17.1.1.15.2. Production
        • 17.1.1.15.3. Applications
        • 17.1.1.15.4. Producers
      • 17.1.1.16. Mycelium
        • 17.1.1.16.1. Overview
        • 17.1.1.16.2. Applications
        • 17.1.1.16.3. Commercial examples
      • 17.1.1.17. Chitosan
        • 17.1.1.17.1. Overview
        • 17.1.1.17.2. Applications
        • 17.1.1.17.3. Commercial examples
      • 17.1.1.18. Bio-naphtha
        • 17.1.1.18.1. Overview
        • 17.1.1.18.2. Markets and applications
        • 17.1.1.18.3. Commercial examples
    • 17.1.2. Recycled and Upcycled Plastics
    • 17.1.3. High-Performance Bio-based Materials
    • 17.1.4. Companies
  • 17.2. Sustainable Agriculture Chemicals
    • 17.2.1. Overview
    • 17.2.2. Biopesticides and Biocontrol Agents
    • 17.2.3. Precision Agriculture Chemicals
    • 17.2.4. Controlled-Release Fertilizers
    • 17.2.5. Biostimulants
    • 17.2.6. Microbials
      • 17.2.6.1. Overview
      • 17.2.6.2. Microbial biostimulants and biofertilizers
      • 17.2.6.3. Microbiome manipulation
      • 17.2.6.4. Prebiotics
    • 17.2.7. Biochemicals
    • 17.2.8. Semiochemicals
    • 17.2.9. Macrobials
    • 17.2.10. Biopesticides
      • 17.2.10.1. Natural herbicides and insecticides
    • 17.2.11. Companies
  • 17.3. Sustainable Construction Materials
    • 17.3.1. Established bio-based construction materials
    • 17.3.2. Hemp-based Materials
      • 17.3.2.1. Hemp Concrete (Hempcrete)
      • 17.3.2.2. Hemp Fiberboard
      • 17.3.2.3. Hemp Insulation
    • 17.3.3. Mycelium-based Materials
      • 17.3.3.1. Insulation
      • 17.3.3.2. Structural Elements
      • 17.3.3.3. Acoustic Panels
      • 17.3.3.4. Decorative Elements
    • 17.3.4. Sustainable Concrete and Cement Alternatives
      • 17.3.4.1. Geopolymer Concrete
      • 17.3.4.2. Recycled Aggregate Concrete
      • 17.3.4.3. Lime-Based Materials
      • 17.3.4.4. Self-healing concrete
        • 17.3.4.4.1. Bioconcrete
        • 17.3.4.4.2. Fiber concrete
      • 17.3.4.5. Microalgae biocement
      • 17.3.4.6. Carbon-negative concrete
      • 17.3.4.7. Biomineral binders
    • 17.3.5. Natural Fiber Composites
      • 17.3.5.1. Types of Natural Fibers
      • 17.3.5.2. Properties
      • 17.3.5.3. Applications in Construction
    • 17.3.6. Cellulose nanofibers
      • 17.3.6.1. Sandwich composites
      • 17.3.6.2. Cement additives
      • 17.3.6.3. Pump primers
      • 17.3.6.4. Insulation materials
    • 17.3.7. Sustainable Insulation Materials
      • 17.3.7.1. Types of sustainable insulation materials
      • 17.3.7.2. Biobased and sustainable aerogels (bio-aerogels)
    • 17.3.8. Companies
  • 17.4. Sustainable Packaging
    • 17.4.1. Paper and board packaging
    • 17.4.2. Food packaging
      • 17.4.2.1. Bio-Based films and trays
      • 17.4.2.2. Bio-Based pouches and bags
      • 17.4.2.3. Bio-Based textiles and nets
      • 17.4.2.4. Bioadhesives
        • 17.4.2.4.1. Starch
        • 17.4.2.4.2. Cellulose
        • 17.4.2.4.3. Protein-Based
      • 17.4.2.5. Barrier coatings and films
        • 17.4.2.5.1. Polysaccharides
          • 17.4.2.5.1.1. Chitin
          • 17.4.2.5.1.2. Chitosan
          • 17.4.2.5.1.3. Starch
        • 17.4.2.5.2. Poly(lactic acid) (PLA)
        • 17.4.2.5.3. Poly(butylene Succinate)
        • 17.4.2.5.4. Functional Lipid and Proteins Based Coatings
      • 17.4.2.6. Active and Smart Food Packaging
        • 17.4.2.6.1. Active Materials and Packaging Systems
        • 17.4.2.6.2. Intelligent and Smart Food Packaging
      • 17.4.2.7. Antimicrobial films and agents
        • 17.4.2.7.1. Natural
        • 17.4.2.7.2. Inorganic nanoparticles
        • 17.4.2.7.3. Biopolymers
      • 17.4.2.8. Bio-based Inks and Dyes
      • 17.4.2.9. Edible films and coatings
        • 17.4.2.9.1. Overview
        • 17.4.2.9.2. Commercial examples
      • 17.4.2.10. Types of bio-based coatings and films in packaging
        • 17.4.2.10.1. Polyurethane coatings
          • 17.4.2.10.1.1. Properties
          • 17.4.2.10.1.2. Bio-based polyurethane coatings
          • 17.4.2.10.1.3. Products
        • 17.4.2.10.2. Acrylate resins
          • 17.4.2.10.2.1. Properties
          • 17.4.2.10.2.2. Bio-based acrylates
          • 17.4.2.10.2.3. Products
        • 17.4.2.10.3. Polylactic acid (Bio-PLA)
          • 17.4.2.10.3.1. Properties
          • 17.4.2.10.3.2. Bio-PLA coatings and films
        • 17.4.2.10.4. Polyhydroxyalkanoates (PHA) coatings
        • 17.4.2.10.5. Cellulose coatings and films
          • 17.4.2.10.5.1. Microfibrillated cellulose (MFC)
          • 17.4.2.10.5.2. Cellulose nanofibers
            • 17.4.2.10.5.2.1. Properties
            • 17.4.2.10.5.2.2. Product developers
        • 17.4.2.10.6. Lignin coatings
        • 17.4.2.10.7. Protein-based biomaterials for coatings
          • 17.4.2.10.7.1. Plant derived proteins
          • 17.4.2.10.7.2. Animal origin proteins
    • 17.4.3. Carbon capture derived materials for packaging
      • 17.4.3.1. Benefits of carbon utilization for plastics feedstocks
      • 17.4.3.2. CO2-derived polymers and plastics
      • 17.4.3.3. CO2 utilization products
    • 17.4.4. Companies
  • 17.5. Green Cosmetics and Personal Care
    • 17.5.1. Natural and Bio-based Ingredients
    • 17.5.2. Microplastic Alternatives
      • 17.5.2.1. Natural hard materials
      • 17.5.2.2. Polysaccharides
        • 17.5.2.2.1. Starch
        • 17.5.2.2.2. Cellulose
          • 17.5.2.2.2.1. Microcrystalline cellulose (MCC)
          • 17.5.2.2.2.2. Regenerated cellulose microspheres
          • 17.5.2.2.2.3. Cellulose nanocrystals
          • 17.5.2.2.2.4. Bacterial nanocellulose (BNC)
        • 17.5.2.2.3. Chitin
      • 17.5.2.3. Proteins
        • 17.5.2.3.1. Collagen/Gelatin
        • 17.5.2.3.2. Casein
      • 17.5.2.4. Polyesters
        • 17.5.2.4.1. Polyhydroxyalkanoates
        • 17.5.2.4.2. Polylactic acid
      • 17.5.2.5. Other natural polymers
        • 17.5.2.5.1. Lignin
          • 17.5.2.5.1.1. Description
          • 17.5.2.5.1.2. Applications and commercial status
        • 17.5.2.5.2. Alginate
          • 17.5.2.5.2.1. Applications and commercial status
    • 17.5.3. Waterless Formulations
    • 17.5.4. Companies
  • 17.6. Bio-based and Eco-Friendly Paints and Coatings
    • 17.6.1. UV-cure
    • 17.6.2. Waterborne coatings
    • 17.6.3. Treatments with less or no solvents
    • 17.6.4. Hyperbranched polymers for coatings
    • 17.6.5. Powder coatings
    • 17.6.6. High solid (HS) coatings
    • 17.6.7. Use of bio-based materials in coatings
      • 17.6.7.1. Biopolymers
      • 17.6.7.2. Coatings based on agricultural waste
      • 17.6.7.3. Vegetable oils and fatty acids
      • 17.6.7.4. Proteins
      • 17.6.7.5. Cellulose
      • 17.6.7.6. Plant-Based wax coatings
    • 17.6.8. Barrier coatings
      • 17.6.8.1. Polysaccharides
        • 17.6.8.1.1. Chitin
        • 17.6.8.1.2. Chitosan
        • 17.6.8.1.3. Starch
      • 17.6.8.2. Poly(lactic acid) (PLA)
      • 17.6.8.3. Poly(butylene Succinate
      • 17.6.8.4. Functional Lipid and Proteins Based Coatings
    • 17.6.9. Alkyd coatings
      • 17.6.9.1. Alkyd resin properties
      • 17.6.9.2. Bio-based alkyd coatings
      • 17.6.9.3. Products
    • 17.6.10. Polyurethane coatings
      • 17.6.10.1. Properties
      • 17.6.10.2. Bio-based polyurethane coatings
        • 17.6.10.2.1. Bio-based polyols
        • 17.6.10.2.2. Non-isocyanate polyurethane (NIPU)
      • 17.6.10.3. Products
    • 17.6.11. Epoxy coatings
      • 17.6.11.1. Properties
      • 17.6.11.2. Bio-based epoxy coatings
      • 17.6.11.3. Products
    • 17.6.12. Acrylate resins
      • 17.6.12.1. Properties
      • 17.6.12.2. Bio-based acrylates
      • 17.6.12.3. Products
    • 17.6.13. Polylactic acid (Bio-PLA)
      • 17.6.13.1. Bio-PLA coatings and films
    • 17.6.14. Polyhydroxyalkanoates (PHA)
    • 17.6.15. Microfibrillated cellulose (MFC)
    • 17.6.16. Cellulose nanofibers
    • 17.6.17. Bacterial Nanocellulose (BNC)
    • 17.6.18. Rosins
    • 17.6.19. Bio-based carbon black
      • 17.6.19.1. Lignin-based
      • 17.6.19.2. Algae-based
    • 17.6.20. Lignin
    • 17.6.21. Antimicrobial films and agents
      • 17.6.21.1. Natural
      • 17.6.21.2. Inorganic nanoparticles
      • 17.6.21.3. Biopolymers
    • 17.6.22. Nanocoatings
    • 17.6.23. Protein-based biomaterials for coatings
      • 17.6.23.1. Plant derived proteins
      • 17.6.23.2. Animal origin proteins
    • 17.6.24. Algal coatings
    • 17.6.25. Polypeptides
    • 17.6.26. Companies
  • 17.7. Green Electronics
    • 17.7.1. Biodegradable Electronics
    • 17.7.2. Recycled and Recoverable Electronic Materials
    • 17.7.3. Conventional electronics manufacturing
    • 17.7.4. Benefits of Green Electronics manufacturing
    • 17.7.5. Challenges in adopting Green Electronics manufacturing
    • 17.7.6. Green Electronics Manufacturing
    • 17.7.7. Sustainability in PCB manufacturing
      • 17.7.7.1. Sustainable cleaning of PCBs
    • 17.7.8. Design of PCBs for sustainability
      • 17.7.8.1. Rigid
      • 17.7.8.2. Flexible
      • 17.7.8.3. Additive manufacturing
      • 17.7.8.4. In-mold elctronics (IME)
    • 17.7.9. Materials
      • 17.7.9.1. Metal cores
      • 17.7.9.2. Recycled laminates
      • 17.7.9.3. Conductive inks
      • 17.7.9.4. Green and lead-free solder
      • 17.7.9.5. Biodegradable substrates
        • 17.7.9.5.1. Bacterial Cellulose
        • 17.7.9.5.2. Mycelium
        • 17.7.9.5.3. Lignin
        • 17.7.9.5.4. Cellulose Nanofibers
        • 17.7.9.5.5. Soy Protein
        • 17.7.9.5.6. Algae
        • 17.7.9.5.7. PHAs
      • 17.7.9.6. Biobased inks
    • 17.7.10. Substrates
      • 17.7.10.1. Halogen-free FR4
        • 17.7.10.1.1. FR4 limitations
        • 17.7.10.1.2. FR4 alternatives
        • 17.7.10.1.3. Bio-Polyimide
      • 17.7.10.2. Metal-core PCBs
      • 17.7.10.3. Biobased PCBs
        • 17.7.10.3.1. Flexible (bio) polyimide PCBs
        • 17.7.10.3.2. Recent commercial activity
      • 17.7.10.4. Paper-based PCBs
      • 17.7.10.5. PCBs without solder mask
      • 17.7.10.6. Thinner dielectrics
      • 17.7.10.7. Recycled plastic substrates
      • 17.7.10.8. Flexible substrates
    • 17.7.11. Sustainable patterning and metallization in electronics manufacturing
      • 17.7.11.1. Introduction
      • 17.7.11.2. Issues with sustainability
      • 17.7.11.3. Regeneration and reuse of etching chemicals
      • 17.7.11.4. Transition from Wet to Dry phase patterning
      • 17.7.11.5. Print-and-plate
      • 17.7.11.6. Approaches
        • 17.7.11.6.1. Direct Printed Electronics
        • 17.7.11.6.2. Photonic Sintering
        • 17.7.11.6.3. Biometallization
        • 17.7.11.6.4. Plating Resist Alternatives
        • 17.7.11.6.5. Laser-Induced Forward Transfer
        • 17.7.11.6.6. Electrohydrodynamic Printing
        • 17.7.11.6.7. Electrically conductive adhesives (ECAs
        • 17.7.11.6.8. Green electroless plating
        • 17.7.11.6.9. Smart Masking
        • 17.7.11.6.10. Component Integration
        • 17.7.11.6.11. Bio-inspired material deposition
        • 17.7.11.6.12. Multi-material jetting
        • 17.7.11.6.13. Vacuumless deposition
        • 17.7.11.6.14. Upcycling waste streams
    • 17.7.12. Sustainable attachment and integration of components
      • 17.7.12.1. Conventional component attachment materials
      • 17.7.12.2. Materials
        • 17.7.12.2.1. Conductive adhesives
        • 17.7.12.2.2. Biodegradable adhesives
        • 17.7.12.2.3. Magnets
        • 17.7.12.2.4. Bio-based solders
        • 17.7.12.2.5. Bio-derived solders
        • 17.7.12.2.6. Recycled plastics
        • 17.7.12.2.7. Nano adhesives
        • 17.7.12.2.8. Shape memory polymers
        • 17.7.12.2.9. Photo-reversible polymers
        • 17.7.12.2.10. Conductive biopolymers
      • 17.7.12.3. Processes
        • 17.7.12.3.1. Traditional thermal processing methods
        • 17.7.12.3.2. Low temperature solder
        • 17.7.12.3.3. Reflow soldering
        • 17.7.12.3.4. Induction soldering
        • 17.7.12.3.5. UV curing
        • 17.7.12.3.6. Near-infrared (NIR) radiation curing
        • 17.7.12.3.7. Photonic sintering/curing
        • 17.7.12.3.8. Hybrid integration
    • 17.7.13. Sustainable integrated circuits
      • 17.7.13.1. IC manufacturing
      • 17.7.13.2. Sustainable IC manufacturing
      • 17.7.13.3. Wafer production
        • 17.7.13.3.1. Silicon
        • 17.7.13.3.2. Gallium nitride ICs
        • 17.7.13.3.3. Flexible ICs
        • 17.7.13.3.4. Fully printed organic ICs
      • 17.7.13.4. Oxidation methods
        • 17.7.13.4.1. Sustainable oxidation
        • 17.7.13.4.2. Metal oxides
        • 17.7.13.4.3. Recycling
        • 17.7.13.4.4. Thin gate oxide layers
      • 17.7.13.5. Patterning and doping
        • 17.7.13.5.1. Processes
          • 17.7.13.5.1.1. Wet etching
          • 17.7.13.5.1.2. Dry plasma etching
          • 17.7.13.5.1.3. Lift-off patterning
          • 17.7.13.5.1.4. Surface doping
      • 17.7.13.6. Metallization
        • 17.7.13.6.1. Evaporation
        • 17.7.13.6.2. Plating
        • 17.7.13.6.3. Printing
          • 17.7.13.6.3.1. Printed metal gates for organic thin film transistors
        • 17.7.13.6.4. Physical vapour deposition (PVD)
    • 17.7.14. End of life
      • 17.7.14.1. Hazardous waste
      • 17.7.14.2. Emissions
      • 17.7.14.3. Water Usage
      • 17.7.14.4. Recycling
        • 17.7.14.4.1. Mechanical recycling
        • 17.7.14.4.2. Electro-Mechanical Separation
        • 17.7.14.4.3. Chemical Recycling
        • 17.7.14.4.4. Electrochemical Processes
        • 17.7.14.4.5. Thermal Recycling
    • 17.7.15. Green Certification
    • 17.7.16. Companies
  • 17.8. Sustainable Textiles and Fibers
    • 17.8.1. Types of bio-based fibres
      • 17.8.1.1. Natural fibres
      • 17.8.1.2. Main-made bio-based fibres
    • 17.8.2. Bio-based synthetics
    • 17.8.3. Recyclability of bio-based fibres
    • 17.8.4. Lyocell
    • 17.8.5. Bacterial cellulose
    • 17.8.6. Algae textiles
    • 17.8.7. Bio-based leather
      • 17.8.7.1. Properties of bio-based leathers
        • 17.8.7.1.1. Tear strength.
        • 17.8.7.1.2. Tensile strength
        • 17.8.7.1.3. Bally flexing
      • 17.8.7.2. Comparison with conventional leathers
      • 17.8.7.3. Comparative analysis of bio-based leathers
      • 17.8.7.4. Plant-based leather
        • 17.8.7.4.1. Overview
        • 17.8.7.4.2. Production processes
          • 17.8.7.4.2.1. Feedstocks
          • 17.8.7.4.2.1. Agriculture Residues
          • 17.8.7.4.2.2. Food Processing Waste
          • 17.8.7.4.2.3. Invasive Plants
          • 17.8.7.4.2.4. Culture-Grown Inputs
          • 17.8.7.4.2.5. Textile-Based
          • 17.8.7.4.2.6. Bio-Composite
        • 17.8.7.4.3. Products
        • 17.8.7.4.4. Market players
      • 17.8.7.5. Mycelium leather
        • 17.8.7.5.1. Overview
        • 17.8.7.5.2. Production process
          • 17.8.7.5.2.1. Growth conditions
          • 17.8.7.5.2.2. Tanning Mycelium Leather
          • 17.8.7.5.2.3. Dyeing Mycelium Leather
        • 17.8.7.5.3. Products
        • 17.8.7.5.4. Market players
      • 17.8.7.6. Microbial leather
        • 17.8.7.6.1. Overview
        • 17.8.7.6.2. Production process
        • 17.8.7.6.3. Fermentation conditions
        • 17.8.7.6.4. Harvesting
        • 17.8.7.6.5. Products
        • 17.8.7.6.6. Market players
      • 17.8.7.7. Lab grown leather
        • 17.8.7.7.1. Overview
        • 17.8.7.7.2. Production process
        • 17.8.7.7.3. Products
        • 17.8.7.7.4. Market players
      • 17.8.7.8. Protein-based leather
        • 17.8.7.8.1. Overview
        • 17.8.7.8.2. Production process
        • 17.8.7.8.3. Commercial activity
      • 17.8.7.9. Sustainable textiles coatings and dyes
        • 17.8.7.9.1. Overview
          • 17.8.7.9.1.1. Coatings
          • 17.8.7.9.1.2. Dyes
        • 17.8.7.9.2. Commercial activity
    • 17.8.8. Companies
  • 17.9. Alternative Fuels and Lubricants
    • 17.9.1. Biofuels and Synthetic Fuels
    • 17.9.2. Biodiesel
      • 17.9.2.1. Biodiesel by generation
      • 17.9.2.2. Production of biodiesel and other biofuels
        • 17.9.2.2.1. Pyrolysis of biomass
        • 17.9.2.2.2. Vegetable oil transesterification
        • 17.9.2.2.3. Vegetable oil hydrogenation (HVO)
          • 17.9.2.2.3.1. Production process
        • 17.9.2.2.4. Biodiesel from tall oil
        • 17.9.2.2.5. Fischer-Tropsch BioDiesel
        • 17.9.2.2.6. Hydrothermal liquefaction of biomass
        • 17.9.2.2.7. CO2 capture and Fischer-Tropsch (FT)
        • 17.9.2.2.8. Dymethyl ether (DME)
      • 17.9.2.3. Prices
      • 17.9.2.4. Global production and consumption
    • 17.9.3. Renewable diesel
      • 17.9.3.1. Production
      • 17.9.3.2. SWOT analysis
      • 17.9.3.3. Global consumption
      • 17.9.3.4. Prices
    • 17.9.4. Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)
      • 17.9.4.1. Description
      • 17.9.4.2. SWOT analysis
      • 17.9.4.3. Global production and consumption
      • 17.9.4.4. Production pathways
      • 17.9.4.5. Prices
      • 17.9.4.6. Bio-aviation fuel production capacities
      • 17.9.4.7. Market challenges
      • 17.9.4.8. Global consumption
    • 17.9.5. Bio-naphtha
      • 17.9.5.1. Overview
      • 17.9.5.2. SWOT analysis
      • 17.9.5.3. Markets and applications
      • 17.9.5.4. Prices
      • 17.9.5.5. Production capacities, by producer, current and planned
      • 17.9.5.6. Production capacities, total (tonnes), historical, current and planned
    • 17.9.6. Biomethanol
      • 17.9.6.1. SWOT analysis
      • 17.9.6.2. Methanol-to gasoline technology
        • 17.9.6.2.1. Production processes
          • 17.9.6.2.1.1. Anaerobic digestion
          • 17.9.6.2.1.2. Biomass gasification
          • 17.9.6.2.1.3. Power to Methane
    • 17.9.7. Ethanol
      • 17.9.7.1. Technology description
      • 17.9.7.2. 1G Bio-Ethanol
      • 17.9.7.3. SWOT analysis
      • 17.9.7.4. Ethanol to jet fuel technology
      • 17.9.7.5. Methanol from pulp & paper production
      • 17.9.7.6. Sulfite spent liquor fermentation
      • 17.9.7.7. Gasification
        • 17.9.7.7.1. Biomass gasification and syngas fermentation
        • 17.9.7.7.2. Biomass gasification and syngas thermochemical conversion
      • 17.9.7.8. CO2 capture and alcohol synthesis
      • 17.9.7.9. Biomass hydrolysis and fermentation
        • 17.9.7.9.1. Separate hydrolysis and fermentation
        • 17.9.7.9.2. Simultaneous saccharification and fermentation (SSF)
        • 17.9.7.9.3. Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)
        • 17.9.7.9.4. Simultaneous saccharification and co-fermentation (SSCF)
        • 17.9.7.9.5. Direct conversion (consolidated bioprocessing) (CBP)
      • 17.9.7.10. Global ethanol consumption
    • 17.9.8. Biobutanol
      • 17.9.8.1. Production
      • 17.9.8.2. Prices
    • 17.9.9. Biomass-based Gas
      • 17.9.9.1. Biomethane
      • 17.9.9.2. Production pathways
        • 17.9.9.2.1. Landfill gas recovery
        • 17.9.9.2.2. Anaerobic digestion
        • 17.9.9.2.3. Thermal gasification
      • 17.9.9.3. SWOT analysis
      • 17.9.9.4. Global production
      • 17.9.9.5. Prices
        • 17.9.9.5.1. Raw Biogas
        • 17.9.9.5.2. Upgraded Biomethane
      • 17.9.9.6. Bio-LNG
        • 17.9.9.6.1. Markets
          • 17.9.9.6.1.1. Trucks
          • 17.9.9.6.1.2. Marine
        • 17.9.9.6.2. Production
        • 17.9.9.6.3. Plants
      • 17.9.9.7. bio-CNG (compressed natural gas derived from biogas)
      • 17.9.9.8. Carbon capture from biogas
    • 17.9.10. Biosyngas
      • 17.9.10.1. Production
      • 17.9.10.2. Prices
    • 17.9.11. Biohydrogen
      • 17.9.11.1. Description
      • 17.9.11.2. SWOT analysis
      • 17.9.11.3. Production of biohydrogen from biomass
        • 17.9.11.3.1. Biological Conversion Routes
          • 17.9.11.3.1.1. Bio-photochemical Reaction
          • 17.9.11.3.1.2. Fermentation and Anaerobic Digestion
        • 17.9.11.3.2. Thermochemical conversion routes
          • 17.9.11.3.2.1. Biomass Gasification
          • 17.9.11.3.2.2. Biomass Pyrolysis
          • 17.9.11.3.2.3. Biomethane Reforming
      • 17.9.11.4. Applications
      • 17.9.11.5. Prices
    • 17.9.12. Biochar in biogas production
    • 17.9.13. Bio-DME
    • 17.9.14. Chemical recycling for biofuels
      • 17.9.14.1. Plastic pyrolysis
      • 17.9.14.2. Used tires pyrolysis
        • 17.9.14.2.1. Conversion to biofuel
      • 17.9.14.3. Co-pyrolysis of biomass and plastic wastes
      • 17.9.14.4. Gasification
        • 17.9.14.4.1. Syngas conversion to methanol
        • 17.9.14.4.2. Biomass gasification and syngas fermentation
        • 17.9.14.4.3. Biomass gasification and syngas thermochemical conversion
      • 17.9.14.5. Hydrothermal cracking
    • 17.9.15. Electrofuels (E-fuels, power-to-gas/liquids/fuels)
      • 17.9.15.1. Introduction
      • 17.9.15.2. Benefits of e-fuels
      • 17.9.15.3. Feedstocks
        • 17.9.15.3.1. Hydrogen electrolysis
      • 17.9.15.4. CO2 capture
      • 17.9.15.5. Production
        • 17.9.15.5.1. eFuel production facilities, current and planned
      • 17.9.15.6. Companies
    • 17.9.16. Algae-derived biofuels
      • 17.9.16.1. Technology description
        • 17.9.16.1.1. Conversion pathways
      • 17.9.16.2. Production
      • 17.9.16.3. Market challenges
      • 17.9.16.4. Prices
      • 17.9.16.5. Producers
    • 17.9.17. Green Ammonia
      • 17.9.17.1. Production
        • 17.9.17.1.1. Decarbonisation of ammonia production
        • 17.9.17.1.2. Green ammonia projects
      • 17.9.17.2. Green ammonia synthesis methods
        • 17.9.17.2.1. Haber-Bosch process
        • 17.9.17.2.2. Biological nitrogen fixation
        • 17.9.17.2.3. Electrochemical production
        • 17.9.17.2.4. Chemical looping processes
      • 17.9.17.3. Blue ammonia
        • 17.9.17.3.1. Blue ammonia projects
        • 17.9.17.3.2. Markets and applications
        • 17.9.17.3.3. Chemical energy storage
        • 17.9.17.3.4. Ammonia fuel cells
        • 17.9.17.3.5. Marine fuel
        • 17.9.17.3.6. Prices
      • 17.9.17.4. Companies and projects
    • 17.9.18. Bio-oils (pyrolysis oils)
      • 17.9.18.1. Description
        • 17.9.18.1.1. Advantages of bio-oils
      • 17.9.18.2. Production
        • 17.9.18.2.1. Fast Pyrolysis
        • 17.9.18.2.2. Costs of production
        • 17.9.18.2.3. Upgrading
      • 17.9.18.3. Applications
      • 17.9.18.4. Bio-oil producers
      • 17.9.18.5. Prices
    • 17.9.19. Refuse Derived Fuels (RDF)
      • 17.9.19.1. Overview
      • 17.9.19.2. Production
        • 17.9.19.2.1. Production process
        • 17.9.19.2.2. Mechanical biological treatment
      • 17.9.19.3. Markets
    • 17.9.20. Bio-based Lubricants
    • 17.9.21. Companies
  • 17.10. Green Pharmaceuticals and Healthcare
    • 17.10.1. Green Pharmaceutical Synthesis
      • 17.10.1.1. Green Solvents
        • 17.10.1.1.1. Supercritical CO2 (scCO2)
        • 17.10.1.1.2. Ionic Liquids
        • 17.10.1.1.3. Bio-based Solvents
        • 17.10.1.1.4. Water-based Reactions
      • 17.10.1.2. Catalysis
        • 17.10.1.2.1. Biocatalysis (Enzymes and Whole-cell Catalysts)
        • 17.10.1.2.2. Heterogeneous Catalysts
        • 17.10.1.2.3. Organocatalysts
        • 17.10.1.2.4. Photocatalysis
      • 17.10.1.3. Continuous Flow Chemistry
        • 17.10.1.3.1. Microreactors
        • 17.10.1.3.2. Flow Photochemistry
        • 17.10.1.3.3. Electrochemical Flow Cells
      • 17.10.1.4. Alternative Energy Sources
        • 17.10.1.4.1. Microwave-assisted Synthesis
        • 17.10.1.4.2. Ultrasound-assisted Reactions
        • 17.10.1.4.3. Mechanochemistry (Ball Milling)
      • 17.10.1.5. Green Oxidation and Reduction Methods
        • 17.10.1.5.1. Electrochemical oxidation/reduction
        • 17.10.1.5.2. Photochemical reactions
        • 17.10.1.5.3. Hydrogen peroxide as green oxidant
      • 17.10.1.6. Atom-Economical Reactions
      • 17.10.1.7. Bio-based Starting Materials
      • 17.10.1.8. Process Intensification
      • 17.10.1.9. Green Analytical Techniques
      • 17.10.1.10. Sustainable Purification Methods
    • 17.10.2. Bio-based Drug Delivery Systems
      • 17.10.2.1. Natural polymers
        • 17.10.2.1.1. Chitosan and its derivatives
        • 17.10.2.1.2. Alginate
        • 17.10.2.1.3. Hyaluronic acid
        • 17.10.2.1.4. Cellulose and its derivatives
      • 17.10.2.2. Protein-based Materials
        • 17.10.2.2.1. Albumin nanoparticles
        • 17.10.2.2.2. Collagen matrices
        • 17.10.2.2.3. Silk fibroin scaffolds
        • 17.10.2.2.4. Gelatin hydrogels
      • 17.10.2.3. Polysaccharide-based Systems
        • 17.10.2.3.1. Cyclodextrins
        • 17.10.2.3.2. Pectin
        • 17.10.2.3.3. Dextran
        • 17.10.2.3.4. Pullulan
      • 17.10.2.4. Lipid-based Carriers
        • 17.10.2.4.1. Liposomes from natural phospholipids
        • 17.10.2.4.2. Solid lipid nanoparticles
        • 17.10.2.4.3. Nanostructured lipid carriers
      • 17.10.2.5. Plant-derived Materials
        • 17.10.2.5.1. Guar gum
        • 17.10.2.5.2. Carrageenan
        • 17.10.2.5.3. Zein (corn protein)
        • 17.10.2.5.4. Starch-based materials
      • 17.10.2.6. Microbial-derived Polymers
        • 17.10.2.6.1. Polyhydroxyalkanoates (PHAs)
        • 17.10.2.6.2. Bacterial cellulose
        • 17.10.2.6.3. Xanthan gum
      • 17.10.2.7. Stimuli-responsive Biopolymers
        • 17.10.2.7.1. pH-sensitive alginate derivatives
        • 17.10.2.7.2. Thermoresponsive chitosan systems
        • 17.10.2.7.3. Enzyme-responsive materials
      • 17.10.2.8. Bioconjugation Techniques
        • 17.10.2.8.1. Click chemistry for polymer modification
        • 17.10.2.8.2. Enzyme-catalyzed conjugation
        • 17.10.2.8.3. Photo-initiated crosslinking
      • 17.10.2.9. Sustainable Particle Formation
        • 17.10.2.9.1. Spray-drying with green solvents
        • 17.10.2.9.2. Electrospinning of biopolymers
        • 17.10.2.9.3. Supercritical fluid-assisted particle formation
    • 17.10.3. Sustainable Medical Devices
    • 17.10.4. Personalized Chemistry in Medicine
      • 17.10.4.1. Tailored Drug Delivery Systems
      • 17.10.4.2. Personalized Diagnostic Materials
      • 17.10.4.3. Custom-synthesized Therapeutics
      • 17.10.4.4. Biocompatible Materials for Implants
      • 17.10.4.5. 3D-printed Pharmaceuticals
      • 17.10.4.6. Personalized Nutrient Formulations
    • 17.10.5. Companies
  • 17.11. Advanced Materials for 3D Printing
    • 17.11.1. Bio-based 3D Printing Resins
    • 17.11.2. Recyclable and Reusable 3D Printing Materials
    • 17.11.3. Functional and Smart 3D Printing Materials
    • 17.11.4. Companies
  • 17.12. Artificial Intelligence in Chemical Design
    • 17.12.1. Machine Learning for Molecular Design
    • 17.12.2. AI-driven Retrosynthesis Planning
    • 17.12.3. Predictive Modelling of Chemical Properties
    • 17.12.4. AI in Process Optimization
    • 17.12.5. Automated Lab Systems and Robotics
    • 17.12.6. AI for Materials Discovery and Development
  • 17.13. Quantum Chemistry Applications
    • 17.13.1. Quantum Computing for Molecular Simulations
    • 17.13.2. Quantum Sensors in Chemical Analysis
    • 17.13.3. Quantum-inspired Algorithms for Property Prediction
    • 17.13.4. Quantum Approaches to Catalyst Design
    • 17.13.5. Quantum Chemistry in Drug Discovery
    • 17.13.6. Quantum Effects in Nanomaterials
    • 17.13.7. Companies

18. ECONOMIC ASPECTS AND BUSINESS MODELS

  • 18.1. Cost Competitiveness of Sustainable Chemical Technologies
  • 18.2. Investment Trends in Green Chemistry
  • 18.3. New Business Models in the Circular Economy
  • 18.4. Market Dynamics and Consumer Preferences
  • 18.5. Intellectual Property Considerations
  • 18.6. Case Studies
    • 18.6.1. Bio-based Production of Bulk Chemicals
    • 18.6.2. CO2 to Polymers: Innovating in Materials
    • 18.6.3. Waste Plastic to Fuels and Chemicals
    • 18.6.4. Green Pharmaceutical Manufacturing
    • 18.6.5. Sustainable Agriculture Chemicals
    • 18.6.6. Circular Economy in Action: Closing the Loop in Packaging
    • 18.6.7. Revolutionizing Textiles: From Petrochemicals to Bio-based Fibers

19. FUTURE OUTLOOK AND EMERGING TRENDS

  • 19.1. Convergence of Bio, Nano, and Information Technologies
  • 19.2. Quantum Computing in Chemical Research and Development
  • 19.3. Space-based Manufacturing of Chemicals
  • 19.4. Artificial Photosynthesis and Solar Fuels
  • 19.5. Personalized and On-demand Chemical Manufacturing
  • 19.6. The Role of Chemistry in Achieving Net-Zero Emissions
  • 19.7. Circular Economy Solutions
  • 19.8. Artificial Intelligence and Digitalization Impact
  • 19.9. Quantum Chemistry Prospects

20. APPENDICES

  • 20.1. Glossary of Terms
  • 20.2. List of Abbreviations
  • 20.3. Research Methodology

21. REFERENCES

List of Tables

  • Table 1. Global drivers and trends in sustainable chemicals
  • Table 2. Role of Digitalization and Industry 4.0 in Sustainable Chemicals
  • Table 3. Types of sustainable chemicals and applications in agriculture
  • Table 4. Types of sustainable chemicals and applications in Green Cosmetics and Personal Care
  • Table 5. Types of sustainable chemicals and applications in Sustainable Packaging
  • Table 6. Types of sustainable chemicals and applications in Eco-friendly Paints and Coatings
  • Table 7. Types of sustainable chemicals and applications in Alternative Fuels and Lubricants
  • Table 8. Types of sustainable chemicals and applications in Pharmaceuticals and Healthcare
  • Table 9. Types of sustainable chemicals and applications in Water Treatment and Purification
  • Table 10. Sustainable Chemicals and Materials in Carbon Capture and Utilization
  • Table 11. Types of sustainable chemicals and applications in Advanced Materials for 3D Printing
  • Table 12. Sustainable Mining and Metallurgy
  • Table 13. Comparison of traditional and sustainable chemical feedstocks
  • Table 14. Types of Biomass and Their Chemical Compositions
  • Table 15. Pretreatment and Conversion Technologies
  • Table 16. Challenges in Scaling Up Biomass Utilization
  • Table 17. Wood-based feedstocks
  • Table 18. Lignocellulosic Agricultural waste
  • Table 19. Energy crops
  • Table 20. Non-Lignocellulosic Agricultural Waste
  • Table 20. Algae based feedstocks
  • Table 21. CO2 Capture Technologies
  • Table 22. Chemical Conversion Pathways for CO2
  • Table 23. Economic and Technical Barriers to CO2 Utilization
  • Table 24. Industrial Waste Streams and By-products
  • Table 25. Electrolysis Technologies
  • Table 26. Feedstock Transition Pathways for Industry
  • Table 27. Types of biocatalysts
  • Table 28. Heterogeneous Catalysis Advancements
  • Table 29. Photocatalysis vs Electrocatalysis
  • Table 30. Feedstock-Specific Green Chemistry Approaches
  • Table 31. Applications of chemically recycled materials
  • Table 32. Summary of non-catalytic pyrolysis technologies
  • Table 33. Summary of catalytic pyrolysis technologies
  • Table 34. Summary of pyrolysis technique under different operating conditions
  • Table 35. Biomass materials and their bio-oil yield
  • Table 36. Biofuel production cost from the biomass pyrolysis process
  • Table 37. Pyrolysis companies and plant capacities, current and planned
  • Table 38. Summary of gasification technologies
  • Table 39. Advanced recycling (Gasification) companies
  • Table 40. Summary of dissolution technologies
  • Table 41. Advanced recycling (Dissolution) companies
  • Table 42. Depolymerisation processes for PET, PU, PC and PA, products and yields
  • Table 43. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 44. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 45. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 46. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 47. Summary of aminolysis technologies
  • Table 48. Advanced recycling (Depolymerisation) companies and capacities (current and planned)
  • Table 49. Overview of hydrothermal cracking for advanced chemical recycling
  • Table 50. Overview of Pyrolysis with in-line reforming for advanced chemical recycling
  • Table 51. Overview of microwave-assisted pyrolysis for advanced chemical recycling
  • Table 52. Overview of plasma pyrolysis for advanced chemical recycling
  • Table 53. Overview of plasma gasification for advanced chemical recycling
  • Table 54. Key methods used in upcycling chemical waste
  • Table 55. Circular Business Models in the Chemical Sector
  • Table 56.Challenges and Opportunities
  • Table 57. Chemical recycling companies
  • Table 58. Methods of electrochemical synthesis
  • Table 59. P2X integration in chemical production
  • Table 60. AI and ML applications in the chemical industry
  • Table 61. Key components and applications of digital twins in chemical plant operations
  • Table 62. Key cybersecurity challenges in the digitalized chemical industry
  • Table 63. Types of advanced manufacturing technologies in the chemical industry
  • Table 64. Key Features of Microreactors and Process Intensification
  • Table 65. Advantages in Pharmaceuticals and Fine Chemicals
  • Table 66. Challenges in Scale-up and Implementation
  • Table 67. Advantages of Modular and Distributed Manufacturing
  • Table 68. Challenges in Implementing Modular and Distributed Manufacturing
  • Table 69. Comparison of Direct Ink Writing and Reactive Printing
  • Table 70. Applications in Custom Synthesis and Formulation
  • Table 71. Components of Flexible and Adaptable Production Systems
  • Table 72. Feedstock-based Classification
  • Table 73. Platform-based Classification
  • Table 74. Product-based Classification
  • Table 75. Process Integration Strategies in Biorefineries
  • Table 76. Production capacities of biorefinery lignin producers
  • Table 77. Algal Biorefinery Products
  • Table 78. Types of Cell Culture Systems
  • Table 79. Factors Affecting Cell Culture Performance
  • Table 80. Types of Fermentation Processes
  • Table 81. Factors Affecting Fermentation Performance
  • Table 82. Advances in Fermentation Technology
  • Table 83. Types of Purification Methods in Downstream Processing
  • Table 84. Factors Affecting Purification Performance
  • Table 85. Advances in Purification Technology
  • Table 86. Common formulation methods used in biomanufacturing
  • Table 87. Factors Affecting Formulation Performance
  • Table 88. Advances in Formulation Technology
  • Table 89. Factors Affecting Scale-up Performance in Biomanufacturing
  • Table 90. Scale-up Strategies in Biomanufacturing
  • Table 91. Factors Affecting Optimization Performance in Biomanufacturing
  • Table 92. Optimization Strategies in Biomanufacturing
  • Table 93. Types of Quality Control Tests in Biomanufacturing
  • Table 94.Factors Affecting Quality Control Performance in Biomanufacturing
  • Table 95. Factors Affecting Characterization Performance in Biomanufacturing
  • Table 96. Key fermentation parameters in batch vs continuous biomanufacturing processes
  • Table 97. Major microbial cell factories used in industrial biomanufacturing
  • Table 98. Comparison of Modes of Operation
  • Table 99. Host organisms commonly used in biomanufacturing
  • Table 100. CO2 non-conversion and conversion technology, advantages and disadvantages
  • Table 101. Carbon utilization revenue forecast by product (US$)
  • Table 102. Carbon utilization business models
  • Table 103. CO2 utilization and removal pathways
  • Table 104. Market challenges for CO2 utilization
  • Table 105. Example CO2 utilization pathways
  • Table 106. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages
  • Table 107. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages
  • Table 108. CO2 derived products via biological conversion-applications, advantages and disadvantages
  • Table 109. Companies developing and producing CO2-based polymers
  • Table 110. Companies developing mineral carbonation technologies
  • Table 111. Comparison of emerging CO2 utilization applications
  • Table 112. Main routes to CO2-fuels
  • Table 113. Market overview for CO2 derived fuels
  • Table 114. Main routes to CO2 -fuels
  • Table 115. Power-to-Methane projects
  • Table 116. Microalgae products and prices
  • Table 117. Main Solar-Driven CO2 Conversion Approaches
  • Table 118. Companies in CO2-derived fuel products
  • Table 119. Commodity chemicals and fuels manufactured from CO2
  • Table 120. Companies in CO2-derived chemicals products
  • Table 121. Carbon capture technologies and projects in the cement sector
  • Table 122. Prefabricated versus ready-mixed concrete markets
  • Table 123. CO2 utilization business models in building materials
  • Table 124. Companies in CO2 derived building materials
  • Table 125. Market challenges for CO2 utilization in construction materials
  • Table 126. Companies in CO2 Utilization in Biological Yield-Boosting
  • Table 127. Applications of CCS in oil and gas production
  • Table 128. CO2 EOR/Storage Challenges
  • Table 129. Comparison of types of biocatalysts
  • Table 130. Types of Microorganism Biocatalysts
  • Table 131. Examples of fungal hosts
  • Table 132. Commonly used yeast hosts
  • Table 133. Common Algal Species Used in Biocatalysis and Their Applications
  • Table 134. Common Cyanobacterial Species Used in Biocatalysis and Their Applications
  • Table 135. Comparison of Algae and Cyanobacteria in Biocatalysis
  • Table 136. Types of Engineered Biocatalysts
  • Table 137. Types of Detergent Enzymes
  • Table 138.Types of Food Processing Enzymes
  • Table 139. Types of Textile Processing Enzymes
  • Table 140. Types of Paper and Pulp Processing Enzymes
  • Table 141. Types of Leather Processing Enzymes
  • Table 142. Types of Biofuel Production Enzymes
  • Table 143. Types of Animal Feed Enzymes
  • Table 144. Types of Pharmaceutical and Diagnostic Enzymes
  • Table 145. Types of Waste Management and Bioremediation Enzymes
  • Table 146. Types of Agriculture and Crop Improvement Enzymes
  • Table 147. Comparison of enzyme types
  • Table 148. Other Types of Biocatalysts
  • Table 149. Production methods for biocatalysts
  • Table 150. Fermentation processes
  • Table 151. Waste-based feedstocks and biochemicals produced
  • Table 152. Microbial and mineral-based feedstocks and biochemicals produced
  • Table 153. Comparison of Cell-Free Protein Synthesis Systems
  • Table 154. Key biomanufacturing processes utilized in synthetic biology
  • Table 155. Molecules produced through industrial biomanufacturing
  • Table 156. Continuous vs batch biomanufacturing
  • Table 157. Key fermentation parameters in batch vs continuous biomanufacturing processes
  • Table 158. Synthetic biology fermentation processes
  • Table 159. Cell-free versus cell-based systems
  • Table 160. Key applications of genome engineering
  • Table 161. Comparison of Immobilization and Encapsulation Techniques
  • Table 162. Types of Nanoparticle Biocatalysts
  • Table 163. Types of Biocatalytic Cascades and Multi-Enzyme Systems
  • Table 164. Key aspects of microfluidics in biocatalysts
  • Table 165. Companies developing biocatalysts
  • Table 166. Key tools and techniques used in metabolic engineering for pathway optimization
  • Table 167. Key applications of metabolic engineering
  • Table 168. Main DNA synthesis technologies
  • Table 169. Main gene assembly methods
  • Table 170. Key applications of genome engineering
  • Table 171. Engineered proteins in industrial applications
  • Table 172.Key computational tools and their applications in synthetic biology
  • Table 173. Feedstocks for synthetic biology
  • Table 174. Products from C1 feedstocks in white biotechnology
  • Table 175. C2 Feedstock Products
  • Table 176. CO2 derived products via biological conversion-applications, advantages and disadvantages
  • Table 177. Common starch sources that can be used as feedstocks for producing biochemicals
  • Table 178. Biomass processes summary, process description and TRL
  • Table 179. Pathways for hydrogen production from biomass
  • Table 180. Overview of alginate-description, properties, application and market size
  • Table 181. Synthetic Biology Market Players
  • Table 182. Types of bio-based solvents
  • Table 183. Solvent Selection Tools and Frameworks
  • Table 184. Companies developing bio-based solvents
  • Table 185. MSW-to-chemicals processes
  • Table 186. Agricultural and food waste valorization approaches
  • Table 187. Value Proposition for Critical Material Extraction Technologies
  • Table 188. Critical Material Extraction Methods Evaluated by Key Performance Metrics
  • Table 189. Critical Rare-Earth Element Recovery Technologies from Secondary Sources
  • Table 190. Li-ion Battery Technology Metal Recovery Methods-Metal, Recovery Method, Recovery Efficiency, Challenges, Environmental Impact, Economic Viability
  • Table 191. Critical Semiconductor Materials Recovery-Material, Primary Source, Recovery Method, Recovery Efficiency, Challenges, Potential Applications
  • Table 192. Critical Semiconductor Material Recovery from Secondary Sources
  • Table 193. Critical Platinum Group Metal Recovery
  • Table 194. Bio-based flocculants and coagulants
  • Table 195. Bio-based polymer membranes
  • Table 196. Ceramic membranes from recycled materials
  • Table 197. Types of Advanced adsorbents
  • Table 198. Nutrient recovery technologies
  • Table 199. Resource recovery processes:
  • Table 200. Types of bioelectrochemical systems
  • Table 201. Types of green solvents used in extraction processes
  • Table 202. Types of biodegradable chelating agents
  • Table 203. Types of biocatalysts used in wastewater treatment
  • Table 204. Types of advanced adsorption materials
  • Table 205. Types of sustainable pH adjustment chemicals
  • Table 206. Green Lixiviants for Metal Extraction
  • Table 207. Sustainable Flotation Chemicals
  • Table 208. Electrochemical Recovery Methods
  • Table 209. Geopolymers and Mine Tailings Utilization
  • Table 210. Sustainable remediation technologies
  • Table 211. Waste-to-energy technologies
  • Table 212. Advanced separation techniques
  • Table 213. Companies in waste valorization and resource recovery
  • Table 214. Energy Efficiency Measures in Chemical Plants
  • Table 215. Renewable Energy Sources in Chemical Production
  • Table 216. Energy Storage Technologies for Process Industries
  • Table 217. Combined Heat and Power (CHP) Systems
  • Table 218. Green Chemistry Metrics and Sustainability Indicators
  • Table 219. Key principles of Safety by Design
  • Table 220. Key steps in risk assessment for new chemical technologies
  • Table 221. Key components of EIA for chemical processes
  • Table 222. Environmental Policies Driving Sustainable Chemistry
  • Table 223. Incentives and Support Mechanisms for Green Chemistry
  • Table 224. Challenges in Regulating Emerging Technologies
  • Table 225. International Cooperation and Harmonization Efforts
  • Table 226. LDPE film versus PLA, 2019-24 (USD/tonne)
  • Table 227. PLA properties
  • Table 228. Applications, advantages and disadvantages of PHAs in packaging
  • Table 229. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers
  • Table 230. Applications of nanocrystalline cellulose (CNC)
  • Table 231. Market overview for cellulose nanofibers in packaging
  • Table 232. Applications of Bacterial Nanocellulose in Packaging
  • Table 233. Types of protein based-bioplastics, applications and companies
  • Table 234. Overview of alginate-description, properties, application and market size
  • Table 235. Companies developing algal-based bioplastics
  • Table 236. Overview of mycelium fibers-description, properties, drawbacks and applications
  • Table 237. Overview of chitosan-description, properties, drawbacks and applications
  • Table 238. Commercial Examples of Chitosan-based Films and Coatings and Companies
  • Table 239. Bio-based naphtha markets and applications
  • Table 240. Bio-naphtha market value chain
  • Table 241. Commercial Examples of Bio-Naphtha Packaging and Companies
  • Table 242. Bioplastics and biodegradable polymers market players
  • Table 243. Biopesticides and Biocontrol Agents
  • Table 244. Types of Controlled Release Fertilizers
  • Table 245. Common Natural Product Biostimulants and Their Modes of Action
  • Table 246. Commercially available microbial bioinsecticides
  • Table 247. Common Biochemicals Used in Agriculture
  • Table 248. Types of Biopesticides
  • Table 249. Sustainable Agriculture Chemicals Market Players
  • Table 250. Established bio-based construction materials
  • Table 251. Types of self-healing concrete
  • Table 252. Types of biobased aerogels
  • Table 253. Sustainable Construction Materials Market Players
  • Table 254. Pros and cons of different type of food packaging materials
  • Table 255. Active Biodegradable Films films and their food applications
  • Table 256. Intelligent Biodegradable Films
  • Table 257. Edible films and coatings market summary
  • Table 258. Types of polyols
  • Table 259. Polyol producers
  • Table 260. Bio-based polyurethane coating products
  • Table 261. Bio-based acrylate resin products
  • Table 262. Polylactic acid (PLA) market analysis
  • Table 263. Commercially available PHAs
  • Table 264. Market overview for cellulose nanofibers in paints and coatings
  • Table 265. Companies developing cellulose nanofibers products in paints and coatings
  • Table 266. Types of protein based-biomaterials, applications and companies
  • Table 267. CO2 utilization and removal pathways
  • Table 268. CO2 utilization products developed by chemical and plastic producers
  • Table 269. Sustainable packaging market players
  • Table 270. Natural and Bio-based Ingredients
  • Table 271. Biodegradable polymers
  • Table 272. CNC properties
  • Table 273.Types of PHAs and properties
  • Table 274. Technical lignin types and applications
  • Table 275. Properties of lignins and their applications
  • Table 276. Production capacities of technical lignin producers
  • Table 277. Production capacities of biorefinery lignin producers
  • Table 278. Examples of Waterless Formulations
  • Table 279. Green Cosmetics and Personal Care Market Players
  • Table 280. Example envinronmentally friendly coatings, advantages and disadvantages
  • Table 281. Plant Waxes
  • Table 282. Types of alkyd resins and properties
  • Table 283. Market summary for bio-based alkyd coatings-raw materials, advantages, disadvantages, applications and producers
  • Table 284. Bio-based alkyd coating products
  • Table 285. Types of polyols
  • Table 286. Polyol producers
  • Table 287. Bio-based polyurethane coating products
  • Table 288. Market summary for bio-based epoxy resins
  • Table 289. Bio-based polyurethane coating products
  • Table 290. Bio-based acrylate resin products
  • Table 291. Polylactic acid (PLA) market analysis
  • Table 292. Market assessment for cellulose nanofibers in paints and coatings-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global paints and coatings OEMs
  • Table 293. Companies developing CNF products in paints and coatings, applications targeted and stage of commercialization
  • Table 294. Types of protein based-biomaterials, applications and companies
  • Table 295. Overview of algal coatings-description, properties, application and market size
  • Table 296. Companies developing algal-based plastics
  • Table 297. Eco-friendly Paints and Coatings Market Players
  • Table 298. Examples of Biodegradable Electronic Materials and Applications
  • Table 299. Benefits of Green Electronics Manufacturing
  • Table 300. Challenges in adopting Green Electronics manufacturing
  • Table 301. Key areas where the PCB industry can improve sustainability
  • Table 302. Improving sustainability of PCB design
  • Table 303. PCB design options for sustainability
  • Table 304. Sustainability benefits and challenges associated with 3D printing
  • Table 305. Conductive ink producers
  • Table 306. Green and lead-free solder companies
  • Table 307. Biodegradable substrates for PCBs
  • Table 308. Overview of mycelium fibers-description, properties, drawbacks and applications
  • Table 309. Application of lignin in composites
  • Table 310. Properties of lignins and their applications
  • Table 311. Properties of flexible electronics-cellulose nanofiber film (nanopaper)
  • Table 312. Companies developing cellulose nanofibers for electronics
  • Table 313. Commercially available PHAs
  • Table 314. Main limitations of the FR4 material system used for manufacturing printed circuit boards (PCBs)
  • Table 315. Halogen-free FR4 companies
  • Table 316. Properties of biobased PCBs
  • Table 317. Applications of flexible (bio) polyimide PCBs
  • Table 318. Main patterning and metallization steps in PCB fabrication and sustainable options
  • Table 319. Sustainability issues with conventional metallization processes
  • Table 320. Benefits of print-and-plate
  • Table 321. Sustainable alternative options to standard plating resists used in printed circuit board (PCB) fabrication
  • Table 322. Applications for laser induced forward transfer
  • Table 323. Copper versus silver inks in laser-induced forward transfer (LIFT) for electronics fabrication
  • Table 324. Approaches for in-situ oxidation prevention
  • Table 325. Market readiness and maturity of different lead-free solders and electrically conductive adhesives (ECAs) for electronics manufacturing
  • Table 326. Advantages of green electroless plating
  • Table 327. Comparison of component attachment materials
  • Table 328. Comparison between sustainable and conventional component attachment materials for printed circuit boards
  • Table 329. Comparison between the SMAs and SMPs
  • Table 330. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication
  • Table 331. Comparison of curing and reflow processes used for attaching components in electronics assembly
  • Table 332. Low temperature solder alloys
  • Table 333. Thermally sensitive substrate materials
  • Table 334. Limitations of existing IC production
  • Table 335. Strategies for improving sustainability in integrated circuit (IC) manufacturing
  • Table 336. Comparison of oxidation methods and level of sustainability
  • Table 337. Stage of commercialization for oxides
  • Table 338. Alternative doping techniques
  • Table 339. Metal content mg / Kg in Printed Circuit Boards (PCBs) from waste desktop computers
  • Table 340. Chemical recycling methods for handling electronic waste
  • Table 341. Electrochemical processes for recycling metals from electronic waste
  • Table 342. Thermal recycling processes for electronic waste
  • Table 343. Green Electronics Market Players
  • Table 344. Properties and applications of the main natural fibres
  • Table 345. Types of sustainable alternative leathers
  • Table 346. Properties of bio-based leathers
  • Table 347. Comparison with conventional leathers
  • Table 348. Price of commercially available sustainable alternative leather products
  • Table 349. Comparative analysis of sustainable alternative leathers
  • Table 350. Key processing steps involved in transforming plant fibers into leather materials
  • Table 351. Current and emerging plant-based leather products
  • Table 352. Companies developing plant-based leather products
  • Table 353. Overview of mycelium-description, properties, drawbacks and applications
  • Table 354. Companies developing mycelium-based leather products
  • Table 355. Types of microbial-derived leather alternative
  • Table 356. Companies developing microbial leather products
  • Table 357. Companies developing plant-based leather products
  • Table 358. Types of protein-based leather alternatives
  • Table 359. Companies developing protein based leather
  • Table 360. Companies developing sustainable coatings and dyes for leather -
  • Table 361. Sustainable Textiles and Fibers Market Players
  • Table 362. Biodiesel by generation
  • Table 363. Biodiesel production techniques
  • Table 364. Summary of pyrolysis technique under different operating conditions
  • Table 365. Biomass materials and their bio-oil yield
  • Table 366. Biofuel production cost from the biomass pyrolysis process
  • Table 367. Properties of vegetable oils in comparison to diesel
  • Table 368. Main producers of HVO and capacities
  • Table 369. Example commercial Development of BtL processes
  • Table 370. Pilot or demo projects for biomass to liquid (BtL) processes
  • Table 371. Global biodiesel consumption, 2010-2035 (M litres/year)
  • Table 372. Global renewable diesel consumption, 2010-2035 (M litres/year)
  • Table 373. Renewable diesel price ranges
  • Table 374. Advantages and disadvantages of Bio-aviation fuel
  • Table 375. Production pathways for Bio-aviation fuel
  • Table 376. Current and announced Bio-aviation fuel facilities and capacities
  • Table 377. Global bio-jet fuel consumption 2019-2035 (Million litres/year)
  • Table 378. Bio-based naphtha markets and applications
  • Table 379. Bio-naphtha market value chain
  • Table 380. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products
  • Table 381. Bio-based Naphtha production capacities, by producer
  • Table 382. Comparison of biogas, biomethane and natural gas
  • Table 383. Processes in bioethanol production
  • Table 384. Microorganisms used in CBP for ethanol production from biomass lignocellulosic
  • Table 385. Ethanol consumption 2010-2035 (million litres)
  • Table 386. Biogas feedstocks
  • Table 387. Existing and planned bio-LNG production plants
  • Table 388. Methods for capturing carbon dioxide from biogas
  • Table 389. Comparison of different Bio-H2 production pathways
  • Table 390. Markets and applications for biohydrogen
  • Table 391. Summary of gasification technologies
  • Table 392. Overview of hydrothermal cracking for advanced chemical recycling
  • Table 393. Applications of e-fuels, by type
  • Table 394. Overview of e-fuels
  • Table 395. Benefits of e-fuels
  • Table 396. eFuel production facilities, current and planned
  • Table 397. E-fuels companies
  • Table 398. Algae-derived biofuel producers
  • Table 399. Green ammonia projects (current and planned)
  • Table 400. Blue ammonia projects
  • Table 401. Ammonia fuel cell technologies
  • Table 402. Market overview of green ammonia in marine fuel
  • Table 403. Summary of marine alternative fuels
  • Table 404. Estimated costs for different types of ammonia
  • Table 405. Main players in green ammonia
  • Table 406. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils
  • Table 407. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil
  • Table 408. Main techniques used to upgrade bio-oil into higher-quality fuels
  • Table 409. Markets and applications for bio-oil
  • Table 410. Bio-oil producers
  • Table 411. Key resource recovery technologies
  • Table 412. Markets and end uses for refuse-derived fuels (RDF)
  • Table 413. Bio-based lubricants
  • Table 414. Alternative Fuels and Lubricants Market Players
  • Table 415. Types of Green Solvents in Green Pharmaceutical Synthesis
  • Table 416. Catalysis Methods in Green Pharmaceutical Synthesis
  • Table 417. Alternative Energy Sources in Pharmaceutical Synthesis
  • Table 418. Green Oxidation and Reduction Methods
  • Table 419. Atom-Economical Reactions
  • Table 420. Bio-based Starting Materials
  • Table 421. Process Intensification Methods
  • Table 422. Green Analytical Techniques
  • Table 423. Sustainable Purification Methods
  • Table 424. Natural Polymers for Drug Delivery
  • Table 425. Protein-based Materials for Drug Delivery
  • Table 426. Polysaccharide-based Systems for Drug Delivery
  • Table 427. Lipid-based Carriers for Drug Delivery
  • Table 428. Plant-derived Materials for Drug Delivery
  • Table 429. Microbial-derived Polymers for Drug Delivery
  • Table 430. Green Synthesis Methods for Drug Delivery Systems
  • Table 431. Stimuli-responsive Biopolymers for Drug Delivery
  • Table 432. Bioconjugation Techniques for Drug Delivery Systems
  • Table 433. Sustainable Particle Formation Techniques for Drug Delivery
  • Table 434. Types of Sustainable Medical Devices
  • Table 435. Sustainable Healthcare and Biomedicine Market Players
  • Table 436. Types of Bio-based 3D Printing Resins
  • Table 437. Types of Recyclable and Reusable 3D Printing Materials
  • Table 438. Types of Functional and Smart 3D Printing Materials
  • Table 439. Advanced Materials for 3D Printing
  • Table 440. Companies in Quantum Chemistry Applications
  • Table 441. Cost Competitiveness of Sustainable Chemical Technologies
  • Table 442. Investment Trends in Green Chemistry
  • Table 443. Business Models in the Circular Economy
  • Table 444. Market Dynamics and Consumer Preferences in Sustainable Chemistry
  • Table 445. Intellectual Property Considerations
  • Table 446. Companies developing quantum algorithms for chemical simulations
  • Table 447. Applications in space-based chemical manufacturing
  • Table 448. Artificial photosynthesis approaches
  • Table 449. Applications and benefits of personalized and on-demand chemical manufacturing
  • Table 450. Technologies for achieving Net-Zero
  • Table 451. Examples of circular economy solutions in the chemical industry
  • Table 452. Applications of AI and digitalization in chemicals
  • Table 453. Quantum chemistry applications
  • Table 454. Glossary of terms
  • Table 455. List of Abbreviations

List of Figures

  • Figure 1. CO2 emissions reduction pathway for the chemical sector
  • Figure 2. Water extraction methods for natural products
  • Figure 3. Circular economy model for the chemical industry
  • Figure 4. Schematic layout of a pyrolysis plant
  • Figure 5. Waste plastic production pathways to (A) diesel and (B) gasoline
  • Figure 6. Schematic for Pyrolysis of Scrap Tires
  • Figure 7. Used tires conversion process
  • Figure 8. Total syngas market by product in MM Nm3/h of Syngas
  • Figure 9. Overview of biogas utilization
  • Figure 10. Biogas and biomethane pathways
  • Figure 11. Products obtained through the different solvolysis pathways of PET, PU, and PA
  • Figure 12. Siemens gPROMS Digital Twin schematic
  • Figure 13. Applications for CO2
  • Figure 14. Cost to capture one metric ton of carbon, by sector
  • Figure 15. Life cycle of CO2-derived products and services
  • Figure 16. Co2 utilization pathways and products
  • Figure 17. Plasma technology configurations and their advantages and disadvantages for CO2 conversion
  • Figure 18. Electrochemical CO2 reduction products
  • Figure 19. LanzaTech gas-fermentation process
  • Figure 20. Schematic of biological CO2 conversion into e-fuels
  • Figure 21. Econic catalyst systems
  • Figure 22. Mineral carbonation processes
  • Figure 23. Conversion route for CO2-derived fuels and chemical intermediates
  • Figure 24. Conversion pathways for CO2-derived methane, methanol and diesel
  • Figure 25. CO2 feedstock for the production of e-methanol
  • Figure 26. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c
  • Figure 27. Audi synthetic fuels
  • Figure 28. Conversion of CO2 into chemicals and fuels via different pathways
  • Figure 29. Conversion pathways for CO2-derived polymeric materials
  • Figure 30. Conversion pathway for CO2-derived building materials
  • Figure 31. Schematic of CCUS in cement sector
  • Figure 32. Carbon8 Systems' ACT process
  • Figure 33. CO2 utilization in the Carbon Cure process
  • Figure 34. Algal cultivation in the desert
  • Figure 35. Example pathways for products from cyanobacteria
  • Figure 36. Typical Flow Diagram for CO2 EOR
  • Figure 37. Large CO2-EOR projects in different project stages by industry
  • Figure 38. Carbon mineralization pathways
  • Figure 39. Cell-free and cell-based protein synthesis systems
  • Figure 40. The design-make-test-learn loop of generative biology
  • Figure 41. CRISPR/Cas9 & Targeted Genome Editing
  • Figure 42. Genetic Circuit-Assisted Smart Microbial Engineering
  • Figure 43. Microbial Chassis Development for Natural Product Biosynthesis
  • Figure 44. LanzaTech gas-fermentation process
  • Figure 45. Schematic of biological CO2 conversion into e-fuels
  • Figure 46. Overview of biogas utilization
  • Figure 47. Biogas and biomethane pathways
  • Figure 48. Schematic overview of anaerobic digestion process for biomethane production
  • Figure 49. BLOOM masterbatch from Algix
  • Figure 50. TRL of critical material extraction technologies
  • Figure 51. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms
  • Figure 52. TEM image of cellulose nanocrystals
  • Figure 53. CNC slurry
  • Figure 54. CNF gel
  • Figure 55. Bacterial nanocellulose shapes
  • Figure 56. BLOOM masterbatch from Algix
  • Figure 57. Luum Temple, constructed from Bamboo
  • Figure 58. Typical structure of mycelium-based foam
  • Figure 59. Commercial mycelium composite construction materials
  • Figure 60. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right)
  • Figure 61. Self-healing bacteria crack filler for concrete
  • Figure 62. Self-healing bio concrete
  • Figure 63. Microalgae based biocement masonry bloc
  • Figure 64. Types of bio-based materials used for antimicrobial food packaging application
  • Figure 65. Water soluble packaging by Notpla
  • Figure 66. Examples of edible films in food packaging
  • Figure 67. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test
  • Figure 68. Applications for CO2
  • Figure 69. Life cycle of CO2-derived products and services
  • Figure 70. Conversion pathways for CO2-derived polymeric materials
  • Figure 71. Schematic of production of powder coatings
  • Figure 72. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms
  • Figure 73. Types of bio-based materials used for antimicrobial food packaging application
  • Figure 74. Vapor degreasing
  • Figure 75. Multi-layered PCB
  • Figure 76. 3D printed PCB
  • Figure 77. In-mold electronics prototype devices and products
  • Figure 78. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components
  • Figure 79. Typical structure of mycelium-based foam
  • Figure 80. Flexible electronic substrate made from CNF
  • Figure 81. CNF composite
  • Figure 82. Oji CNF transparent sheets
  • Figure 83. Electronic components using cellulose nanofibers as insulating materials
  • Figure 84. Dell's Concept Luna laptop
  • Figure 85. Direct-write, precision dispensing, and 3D printing platform for 3D printed electronics
  • Figure 86. 3D printed circuit boards from Nano Dimension
  • Figure 87. Photonic sintering
  • Figure 88. Laser-induced forward transfer (LIFT)
  • Figure 89. Material jetting 3d printing
  • Figure 90. Material jetting 3d printing product
  • Figure 91. The molecular mechanism of the shape memory effect under different stimuli
  • Figure 92. Supercooled Soldering(TM) Technology
  • Figure 93. Reflow soldering schematic
  • Figure 94. Schematic diagram of induction heating reflow
  • Figure 95. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films
  • Figure 96. Types of PCBs after dismantling waste computers and monitors
  • Figure 97. AlgiKicks sneaker, made with the Algiknit biopolymer gel
  • Figure 98. Conceptual landscape of next-gen leather materials
  • Figure 99. Typical structure of mycelium-based foam
  • Figure 100. Hermes bag made of MycoWorks' mycelium leather
  • Figure 101. Ganni blazer made from bacterial cellulose
  • Figure 102. Bou Bag by GANNI and Modern Synthesis
  • Figure 103. Regional production of biodiesel (billion litres)
  • Figure 104. Flow chart for biodiesel production
  • Figure 105. Biodiesel (B20) average prices, current and historical, USD/litre
  • Figure 106. Global biodiesel consumption, 2010-2035 (M litres/year)
  • Figure 107. SWOT analysis for renewable iesel
  • Figure 108. Global renewable diesel consumption, 2010-2035 (M litres/year)
  • Figure 109. SWOT analysis for Bio-aviation fuel
  • Figure 110. Global bio-jet fuel consumption to 2019-2035 (Million litres/year)
  • Figure 111. SWOT analysis for bio-naphtha
  • Figure 112. Bio-based naphtha production capacities, 2018-2035 (tonnes)
  • Figure 113. SWOT analysis biomethanol
  • Figure 114. Renewable Methanol Production Processes from Different Feedstocks
  • Figure 115. Production of biomethane through anaerobic digestion and upgrading
  • Figure 116. Production of biomethane through biomass gasification and methanation
  • Figure 117. Production of biomethane through the Power to methane process
  • Figure 118. SWOT analysis for ethanol
  • Figure 119. Ethanol consumption 2010-2035 (million litres)
  • Figure 120. Properties of petrol and biobutanol
  • Figure 121. Biobutanol production route
  • Figure 122. Biogas and biomethane pathways
  • Figure 123. Overview of biogas utilization
  • Figure 124. Biogas and biomethane pathways
  • Figure 125. Schematic overview of anaerobic digestion process for biomethane production
  • Figure 126. Schematic overview of biomass gasification for biomethane production
  • Figure 127. SWOT analysis for biogas
  • Figure 128. Total syngas market by product in MM Nm3/h of Syngas, 2021
  • Figure 129. SWOT analysis for biohydrogen
  • Figure 130. Waste plastic production pathways to (A) diesel and (B) gasoline
  • Figure 131. Schematic for Pyrolysis of Scrap Tires
  • Figure 132. Used tires conversion process
  • Figure 133. Total syngas market by product in MM Nm3/h of Syngas
  • Figure 134. Overview of biogas utilization
  • Figure 135. Biogas and biomethane pathways
  • Figure 136. Process steps in the production of electrofuels
  • Figure 137. Mapping storage technologies according to performance characteristics
  • Figure 138. Production process for green hydrogen
  • Figure 139. E-liquids production routes
  • Figure 140. Fischer-Tropsch liquid e-fuel products
  • Figure 141. Resources required for liquid e-fuel production
  • Figure 142. Pathways for algal biomass conversion to biofuels
  • Figure 143. Algal biomass conversion process for biofuel production
  • Figure 144. Classification and process technology according to carbon emission in ammonia production
  • Figure 145. Green ammonia production and use
  • Figure 146. Schematic of the Haber Bosch ammonia synthesis reaction
  • Figure 147. Schematic of hydrogen production via steam methane reformation
  • Figure 148. Estimated production cost of green ammonia
  • Figure 149. Bio-oil upgrading/fractionation techniques
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!