Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Verified Market Research | PRODUCT CODE: 1616427

Cover Image

PUBLISHER: Verified Market Research | PRODUCT CODE: 1616427

Chemical Mechanical Planarization Market by Type, Technology, Application, Distribution Channel & Region for 2024-2031

PUBLISHED:
PAGES: 202 Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
Single User License
USD 3950
Multi User License
USD 4850
Enterprise User License
USD 7550

Add to Cart

Chemical Mechanical Planarization Market Valuation - 2024-2031

The Chemical Mechanical Planarization (CMP) market is critical in semiconductor manufacturing, providing precise wafer surface planarization. CMP uses chemical and mechanical methods to smooth and flatten semiconductor surfaces, improving device performance and reliability. This market is being pushed by advances in semiconductor technology and rising demand for smaller, more efficient devices. This is likely to enable the market size surpass USD 6.5 Billion valued in 2023 to reach a valuation of aroundUSD 11.11 Billion by 2031.

North America and Asia-Pacific dominate the CMP market, owing to significant investments in semiconductor manufacturing and technical innovation. Leading firms include Applied Materials, Cabot Microelectronics and Ebara Corporation. The market is likely to rise as the semiconductor industry expands and evolves with upcoming technologies such as AI and 5G. The rising demand for chemical mechanical planarization is enabling the market grow at aCAGR of 7.8% from 2024 to 2031.

Chemical Mechanical Planarization Market: Definition/ Overview

Chemical Mechanical Planarization (CMP) is a method for smoothing and flattening semiconductor surfaces. It uses a chemical slurry and mechanical polishing to remove superfluous material, resulting in uniform layers required for advanced integrated circuit construction and maximum device performance.

Chemical Mechanical Planarization (CMP) is essential in semiconductor production for producing flat and smooth wafer surfaces. It entails simultaneous chemical and mechanical processes to remove surplus material, improve homogeneity and allow for precise patterning of integrated circuits, resulting in optimal performance and reliability in semiconductor devices.

Chemical Mechanical Planarization (CMP) is positioned for future growth because to its importance in semiconductor production, particularly for advanced nodes and upcoming technologies such as AI chips and IoT devices. CMP's precise polishing of wafers to nanoscale levels provides great yields and performance in next-generation devices.

What's inside a VMR industry report?

Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.

Will Growth of the Semiconductor Industry Boost the Chemical Mechanical Planarization Market?

The rise of the semiconductor sector is expected to greatly increase the chemical mechanical planarization (CMP) market. As global demand for electronics continues to rise in industries such as telecommunications, automotive, and consumer electronics, semiconductor manufacturers are increasing production capacity. This growth is being driven by technological breakthroughs such as 5G, artificial intelligence and the Internet of Things (IoT), all of which demand increasingly sophisticated and efficient semiconductor components.

CMP is vital in semiconductor production because it ensures precise polishing and planarization of wafer surfaces, which is required for good yields and integrated circuit performance. As semiconductor designs get more sophisticated and feature sizes drop, the demand for CMP methods capable of handling these issues increases. Furthermore, continued innovation in semiconductor materials and techniques further propels the adoption of CMP solutions.

Therefore, the growth trajectory of the semiconductor industry directly correlates with the expansion of the CMP market, making CMP an integral part of advancing semiconductor manufacturing capabilities globally.

Will Limited Compatibility with Modern Materials Hamper the Chemical Mechanical Planarization Market?

Limited compatibility with current materials can present a problem to the chemical mechanical planarization (CMP) sector. As semiconductor technology advances, novel materials such as low-k dielectrics and sophisticated metals are being used more frequently in semiconductor manufacture. CMP procedures must continuously adapt to these materials in order to achieve successful planarization without producing damage or contamination.

Innovation in CMP slurries, pads, and equipment is critical for overcoming compatibility challenges while maintaining high yields and quality in semiconductor manufacturing. Companies who invest in research and development to improve CMP technology for newer materials will be better able to meet industry demands. As a result, addressing compatibility issues is critical for the CMP market to accommodate semiconductor manufacturers' increasing needs and maintain its position in enabling the creation of cutting-edge integrated circuits.

Category-Wise Acumens

Will High-Performance Computing Drive the Technology Segment?

High-performance computing (HPC) is a major driver of the leading-edge technology segment in the chemical mechanical planarization (CMP) market. HPC applications, such as AI, machine learning and data analytics require advanced semiconductor nodes (such as 7nm and down) to provide extraordinary processing power and efficiency. CMP is critical to achieve the nanoscale precision required by these sophisticated integrated circuits.

As the demand for higher computing speeds and improved data processing capabilities grows in industries such as research, finance and healthcare, so does the need for more powerful semiconductors. This trend not only fuels CMP technology innovation, but it also encourages investment in next-generation materials and processes that improve semiconductor performance. Consequently, HPC is likely to have a substantial impact on the growth and evolution of the Leading-Edge technology segment in the CMP market.

Will Widespread Use in Electronics Drive the Integrated Circuits Segment?

The extensive use of electronics drives the Integrated Circuits (ICs) segment of the chemical mechanical planarization (CMP) market. Smartphones, computers, television and automobile electronics all rely on integrated circuits (ICs). As customer demand for these items grows globally, so does the necessity for modern semiconductor manufacturing processes like as CMP to ensure the manufacture of high-performance integrated circuits.

Furthermore, emerging technologies like as 5G, IoT and AI-driven applications are increasing the complexity and performance requirements for integrated circuits. This tendency not only drives innovation in semiconductor design, but it also needs more precise and efficient production methods, such as CMP. As a result, the ICs category continues to dominate the CMP market, driven by continued developments in electronics and expanding applications that rely on sophisticated semiconductor technologies.

Country/Region Wise Acumens

Will Strong Presence of Semiconductor Manufacturing Hubs the Market in North America?

The existence of semiconductor manufacturing centers in North America has a big impact on the market. The region is home to significant firms such as Intel and AMD, as well as a strong ecosystem of semiconductor production facilities (fabs) and research institutions. These centers drive innovation and technological improvements in semiconductor manufacturing processes, such as chemical mechanical planarization (CMP).

North America benefits from significant R&D investments, giving it a competitive advantage in developing next-generation semiconductor technologies. This climate boosts demand for CMP technologies, which are critical for achieving high precision and uniformity in semiconductor wafer production. Furthermore, favourable government policies and infrastructure assistance strengthen North America's position as a key hub for semiconductor manufacturing. As a result, the region continues to play a crucial role in developing the global CMP market, with trends in technology adoption and market growth across various high-tech industries.

Will Increasing Semiconductor Production Drive the Market in Asia Pacific Region?

Increasing semiconductor output in Asia-Pacific is a major driver of the chemical mechanical planarization (CMP) market. Countries such as China, Taiwan, and South Korea are critical to global semiconductor manufacturing, having key fabs and undergoing significant technical improvement. This rise is being driven by rising demand for electronics such as smartphones, IoT devices and automotive electronics, all of which rely significantly on sophisticated semiconductor technologies.

The rise of semiconductor production capacity in Asia-Pacific increases the demand for CMP technologies to assure high yields and quality in semiconductor wafers. Furthermore, favorable government regulations, infrastructural expenditures and a competent workforce add to the region's appeal for semiconductor manufacturing. As a result, Asia-Pacific is positioning itself as the fastest-growing area in the CMP market, driving innovation and competitiveness in the global semiconductor industry.

Competitive Landscape

The chemical mechanical planarization market is a dynamic and competitive space, characterized by a diverse range of players vying for market share. These players are on the run for solidifying their presence through the adoption of strategic plans such as collaborations, mergers, acquisitions, and political support. The organizations are focusing on innovating their product line to serve the vast population in diverse regions.

Some of the prominent players operating in the chemical mechanical planarization market include:

Applied Materials, Inc., CMC Materials, Inc., Fujimi Incorporated, Hitachi Chemical Co., Ltd., Ebara Corporation, Versum Materials, Inc., DuPont Electronic Solutions, BASF SE, Lam Research Corporation, Intel Corporation, Samsung Electronics Co., Ltd.

Latest Developments

In July 2022, Entegris bought CMC Materials, Inc. to expand its range for semiconductor and fabrication applications.

In March 2022, Fujifilm Electronic Materials, U.S.A., Inc. completed a $88 million expansion of its facilities in Mesa, Arizona, USA. This expansion boosts the company's manufacturing capacity by 30%.

In February 2022, Merck Korea finished building a semiconductor CMP slurry production facility at its Pyeongtaek plant in South Korea.

Product Code: 6702

TABLE OF CONTENTS

1. Introduction

  • Market Definition
  • Market Segmentation
  • Research Methodology

2. Executive Summary

  • Key Findings
  • Market Overview
  • Market Highlights

3. Market Overview

  • Market Size and Growth Potential
  • Market Trends
  • Market Drivers
  • Market Restraints
  • Market Opportunities
  • Porter's Five Forces Analysis

4. Chemical Mechanical Planarization Market, By Type of Consumables

  • Abrasive Slurries
  • Pad Conditioners

5. Chemical Mechanical Planarization Market, By Equipment Type

  • Polishing Machines
  • Cleaning Equipment

6. Chemical Mechanical Planarization Market, By End-User Industry

  • Semiconductor Manufacturing
  • Data Storage
  • Optics and Photonics
  • MEMS (Micro-Electro-Mechanical Systems)
  • Others

7. Regional Analysis

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • United Kingdom
  • Germany
  • France
  • Italy
  • Asia-Pacific
  • China
  • Japan
  • India
  • Australia
  • Latin America
  • Brazil
  • Argentina
  • Chile
  • Middle East and Africa
  • South Africa
  • Saudi Arabia
  • UAE

8. Market Dynamics

  • Market Drivers
  • Market Restraints
  • Market Opportunities
  • Impact of COVID-19 on the Market

9. Competitive Landscape

  • Key Players
  • Market Share Analysis

10. Company Profiles

  • Solai Corporation
  • Cabot Microelectronics Corporation
  • DowDuPont
  • BASF SE
  • E. I. du Pont de Nemours and Company
  • Shin-Etsu Chemical Co. , Ltd.
  • TEL Corporation
  • Air Products and Chemicals, Inc.
  • Merck KGaA
  • Entegris, Inc.

11. Market Outlook and Opportunities

  • Emerging Technologies
  • Future Market Trends
  • Investment Opportunities

12. Appendix

  • List of Abbreviations
  • Sources and References
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!