Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: TechSci Research | PRODUCT CODE: 1667940

Cover Image

PUBLISHER: TechSci Research | PRODUCT CODE: 1667940

AI In Medical Coding Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component, By End Use, By Region and Competition, 2020-2030F

PUBLISHED:
PAGES: 182 Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
Unprintable PDF (Single User License)
USD 4500
PDF and Excel (Multi-User License)
USD 5500
PDF and Excel (Custom Research License)
USD 8000

Add to Cart

We offer 8 hour analyst time for an additional research. Please contact us for the details.

Global AI In Medical Coding Market was valued at USD 2.45 Billion in 2024 and is expected to reach USD 4.23 Billion by 2030 with a CAGR of 9.48% during the forecast period. The Global AI in Medical Coding Market is primarily driven by the increasing need for automation and efficiency in healthcare administration. AI technologies, particularly machine learning and natural language processing (NLP), are being integrated into medical coding to streamline the process, reduce errors, and enhance accuracy. The growing volume of medical data, along with the complexity of coding systems, has made manual coding increasingly time-consuming and prone to mistakes, driving the demand for AI-powered solutions. Regulatory compliance and the shift towards value-based care models necessitate accurate and efficient coding for proper reimbursement and reporting. The AI-driven automation of medical coding improves operational efficiency, reduces administrative costs, and supports healthcare organizations in adapting to evolving regulations and standards, fueling market growth.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 2.45 Billion
Market Size 2030USD 4.23 Billion
CAGR 2025-20309.48%
Fastest Growing SegmentOutsourced
Largest MarketNorth America

Key Market Drivers

Increasing Demand for Automation in Healthcare

The increasing need for automation in healthcare is one of the primary drivers behind the growth of the Global AI in Medical Coding Market. As healthcare systems become more complex, managing the volume of patient data, clinical documents, and medical records has become a daunting task. Medical coding, the process of translating healthcare diagnoses, procedures, medical services, and equipment into universally recognized alphanumeric codes, is a crucial part of this workflow. Traditionally, this process has been manual, time-consuming, and prone to human error, which can lead to costly mistakes, delayed reimbursements, and compliance issues. In March 2021, Athenahealth introduced its Medical Coding Solution, an EHR-based coding tool designed to reduce the coding workload for clinicians, ultimately helping to alleviate clinician burnout.

With the adoption of electronic health records (EHRs) and the expansion of regulatory requirements, the volume of coding has significantly increased, and traditional methods can no longer keep up. Manual medical coding involves not just identifying the correct codes, but also interpreting complex medical terminology, which varies by region, healthcare system, and clinical context. AI technologies, particularly machine learning and natural language processing (NLP), are increasingly being employed to automate these tasks, significantly improving both speed and accuracy.

Key Market Drivers

Limited Availability of High-Quality Training Data

For AI algorithms to be effective in medical coding, they require large amounts of high-quality training data. AI systems, particularly machine learning models, are trained on annotated datasets to learn patterns and relationships between medical conditions, treatments, and their respective codes. However, the availability of large, diverse, and accurately annotated datasets in the healthcare sector remains a challenge.

Key Market Trends

Increasing Focus on Value-Based Care

The shift towards value-based care is a significant driver in the Global AI in medical coding market. Under the value-based care model, healthcare providers are reimbursed based on patient outcomes rather than the volume of services provided. This model places a greater emphasis on accurate documentation and coding, as reimbursement is directly tied to the correct coding of diagnoses and procedures. In March 2023, Clinion, a leading healthcare technology company, introduced an AI-driven medical coding solution tailored specifically for clinical trials. This innovative service enhances the efficiency, accuracy, and speed of medical coding in clinical research. Using advanced AI algorithms, the system rapidly processes and analyzes large volumes of clinical trial data, extracting relevant information and assigning the correct codes. This significantly reduces the time and effort needed for coding tasks.

Accurate coding is essential for healthcare providers to receive appropriate reimbursement under value-based care models. AI can help ensure that codes are assigned correctly and comprehensively, enabling providers to demonstrate the quality of care delivered to patients. AI-powered coding systems can help identify areas for improvement in care delivery by analyzing coding patterns and patient outcomes, allowing healthcare providers to align their practices with value-based care objectives. As the adoption of value-based care increases, healthcare providers will rely more heavily on AI to optimize coding accuracy, reduce errors, and ensure that they are properly reimbursed for the care they provide. This shift will further drive the demand for AI in medical coding solutions.

Key Market Players

  • 3M Company
  • Nuance Communications, Inc.
  • MedsIT Nexus Inc.
  • Optum, Inc.
  • Oracle Corporation
  • Olive Technologies, Inc.
  • Medicodio Inc.
  • Fathom, Inc.
  • Wolters Kluwer N.V.
  • Medisys Data Solutions Inc.

Report Scope:

In this report, the Global AI In Medical Coding Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

AI In Medical Coding Market, By Component:

  • In-House
  • Outsourced

AI In Medical Coding Market, By End Use:

  • Healthcare Providers
  • Medical Billing
  • Companies
  • Payers

AI In Medical Coding Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global AI In Medical Coding Market.

Available Customizations:

Global AI In Medical Coding market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).
Product Code: 27539

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validations
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global AI In Medical Coding Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Component (In-House and Outsourced)
    • 5.2.2. By End Use (Healthcare Providers, Medical Billing, Companies, and Payers)
    • 5.2.3. By Region
    • 5.2.4. By Company (2024)
  • 5.3. Market Map

6. North America AI in Medical Coding Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Component
    • 6.2.2. By End Use
    • 6.2.3. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States AI in Medical Coding Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Component
        • 6.3.1.2.2. By End Use
    • 6.3.2. Canada AI in Medical Coding Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Component
        • 6.3.2.2.2. By End Use
    • 6.3.3. Mexico AI in Medical Coding Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Component
        • 6.3.3.2.2. By End Use

7. Europe AI in Medical Coding Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Component
    • 7.2.2. By End Use
    • 7.2.3. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany AI in Medical Coding Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Component
        • 7.3.1.2.2. By End Use
    • 7.3.2. United Kingdom AI in Medical Coding Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Component
        • 7.3.2.2.2. By End Use
    • 7.3.3. Italy AI in Medical Coding Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Component
        • 7.3.3.2.2. By End Use
    • 7.3.4. France AI in Medical Coding Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Component
        • 7.3.4.2.2. By End Use
    • 7.3.5. Spain AI in Medical Coding Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Component
        • 7.3.5.2.2. By End Use

8. Asia-Pacific AI in Medical Coding Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Component
    • 8.2.2. By End Use
    • 8.2.3. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China AI in Medical Coding Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Component
        • 8.3.1.2.2. By End Use
    • 8.3.2. India AI in Medical Coding Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Component
        • 8.3.2.2.2. By End Use
    • 8.3.3. Japan AI in Medical Coding Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Component
        • 8.3.3.2.2. By End Use
    • 8.3.4. South Korea AI in Medical Coding Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Component
        • 8.3.4.2.2. By End Use
    • 8.3.5. Australia AI in Medical Coding Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Component
        • 8.3.5.2.2. By End Use

9. South America AI in Medical Coding Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Component
    • 9.2.2. By End Use
    • 9.2.3. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil AI in Medical Coding Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Component
        • 9.3.1.2.2. By End Use
    • 9.3.2. Argentina AI in Medical Coding Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Component
        • 9.3.2.2.2. By End Use
    • 9.3.3. Colombia AI in Medical Coding Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Component
        • 9.3.3.2.2. By End Use

10. Middle East and Africa AI in Medical Coding Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Component
    • 10.2.2. By End Use
    • 10.2.3. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa AI in Medical Coding Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Component
        • 10.3.1.2.2. By End Use
    • 10.3.2. Saudi Arabia AI in Medical Coding Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Component
        • 10.3.2.2.2. By End Use
    • 10.3.3. UAE AI in Medical Coding Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Component
        • 10.3.3.2.2. By End Use

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Competitive Landscape

  • 14.1. 3M Company
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Financials (As Reported)
    • 14.1.5. Recent Developments
    • 14.1.6. Key Personnel Details
    • 14.1.7. SWOT Analysis
  • 14.2. Nuance Communications, Inc.
  • 14.3. MedsIT Nexus Inc.
  • 14.4. Optum, Inc.
  • 14.5. Oracle Corporation
  • 14.6. Olive Technologies, Inc.
  • 14.7. Medicodio Inc.
  • 14.8. Fathom, Inc.
  • 14.9. Wolters Kluwer N.V.
  • 14.10. Medisys Data Solutions Inc.

15. Strategic Recommendations

16. About Us & Disclaimer

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!