Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1700131

Cover Image

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1700131

System On Chip (SoC) Market Forecasts to 2032 - Global Analysis By Type (Digital SoC, Analog SoC, Mixed-Signal SoC and Other Types), Processor Type, Node, Architecture, End User and By Geography

PUBLISHED:
PAGES: 200+ Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
PDF (Single User License)
USD 4150
PDF (2-5 User License)
USD 5250
PDF & Excel (Site License)
USD 6350
PDF & Excel (Global Site License)
USD 7500

Add to Cart

According to Stratistics MRC, the Global System On Chip (SoC) Market is accounted for $140.82 billion in 2025 and is expected to reach $210.38 billion by 2032 growing at a CAGR of 10.5% during the forecast period. A System on Chip (SoC) is an integrated circuit that combines all essential components of a computer or electronic system into a single chip. SoCs are widely used in smartphones, tablets, IoT devices, and embedded systems due to their compact size, power efficiency, and high performance. By integrating multiple functions on a single chip, SoCs reduce power consumption, improve performance, and lower manufacturing costs, making them ideal for modern electronic devices.

According to Ericsson's latest mobility report, 5G mobile subscriptions are expected to surpass 1.5 billion globally by the end of 2023, creating substantial demand for advanced SoC solutions that can support high-speed data processing and efficient power management.

Market Dynamics:

Driver:

Rising demand for smart devices

As consumers increasingly adopt smartphones, tablets, wearables, smart home devices, and IoT gadgets, the need for compact, power-efficient, and high-performance chips grows. SoCs integrate multiple functions, reducing device size and power consumption while enhancing processing speed and connectivity. The expansion of 5G, AI-driven applications, and edge computing further fuels demand for advanced SoCs. This trend drives continuous innovation and investment in semiconductor technology, propelling market expansion.

Restraint:

Complexity in fabrication

The complexity in SoC fabrication arises from miniaturization, integration of multiple components, and advanced semiconductor processes. Designing and manufacturing SoCs require precise lithography, high-end fabrication equipment, and extensive testing, making production costly and time-consuming. As chips become smaller and more powerful, ensuring thermal management, power efficiency, and signal integrity adds further challenges. Additionally, dependence on limited foundries creates supply chain constraints, further impacting SoC availability and market expansion.

Opportunity:

Growth in 5G & edge computing

5G networks require advanced SoCs to handle massive data transfers, enabling seamless connectivity in smartphones, IoT devices, and autonomous systems. Meanwhile, Edge Computing reduces reliance on cloud processing by bringing computation closer to data sources, requiring specialized SoCs for AI processing, real-time analytics, and security. As industries adopt smart infrastructure, autonomous vehicles, and industrial automation, demand for high-performance SoCs continues to rise, fueling market growth and innovation.

Threat:

Growing risks of hardware hacking and vulnerabilities

SoCs integrate multiple functions, making them attractive targets for cyberattacks, data breaches, and hardware Trojans. Security flaws in SoCs can lead to intellectual property theft, system malfunctions, and financial losses. As cyber threats evolve, manufacturers must invest in secure chip designs, encryption, and hardware-based security, increasing production costs. Concerns over supply chain security and regulatory compliance further slow SoC adoption, impacting market expansion.

Covid-19 Impact:

The covid-19 pandemic significantly impacted the system on chip (SoC) market, causing supply chain disruptions, semiconductor shortages, and delayed production due to factory shutdowns. Demand for SoCs surged as remote work, online education, and digital transformation increased reliance on smartphones, laptops, and IoT devices. Post-pandemic recovery led to investments in semiconductor manufacturing, boosting SoC production and innovation, while chip shortages highlighted the need for supply chain resilience.

The digital SoC segment is expected to be the largest during the forecast period

The digital SoC segment is expected to account for the largest market share during the forecast period. A digital system on chip (SoC) integrates multiple digital components, including CPU, GPU, memory, and input/output interfaces, into a single chip. It is designed for high-speed data processing, low power consumption, and compact size, making it ideal for smartphones, IoT devices, automotive electronics, and AI applications. With increasing demand for 5G, AI, and edge computing, digital SoCs continue to evolve, driving innovation in consumer electronics and industrial automation.

The automotive segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the automotive segment is predicted to witness the highest growth rate. In automotive applications, System on Chip (SoC) plays a crucial role in Advanced Driver Assistance Systems (ADAS), infotainment, autonomous driving, and vehicle connectivity. SoCs integrate AI, sensor fusion, real-time processing, and wireless communication to enhance vehicle safety, performance, and user experience. With the rise of smart mobility and connected cars, automotive SoCs are evolving to support 5G, AI-driven decision-making, and energy-efficient computing, shaping the future of intelligent transportation.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, due to increasing demand for smartphones, IoT devices, automotive electronics, and 5G technology. Countries like China, Taiwan, South Korea, and Japan dominate the market, housing major semiconductor manufacturers such as TSMC, Samsung, and MediaTek. Government initiatives, rising investments in AI, IoT, and smart infrastructure, and strong consumer electronics production drive market expansion.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by advancements in AI, 5G, autonomous vehicles, and IoT technologies. The region houses major semiconductor players like Qualcomm, Intel, AMD, and NVIDIA, contributing to innovation and high-performance chip development. Strong demand for smartphones, automotive electronics, and data centers fuels market growth. Government initiatives supporting domestic semiconductor manufacturing, such as the CHIPS Act, boost local production.

Key players in the market

Some of the key players in System On Chip (SoC) Market include Qualcomm Technologies Inc., Apple Inc., Intel Corporation, NXP Semiconductors N.V., Broadcom Inc., STMicroelectronics N.V., Samsung Electronics Co., Ltd., Micron Technology, Inc., Taiwan Semiconductor Manufacturing Company Limited (TSMC), Infineon Technologies AG, NVIDIA Corporation, Renesas Electronics Corporation, Advanced Micro Devices, Inc. (AMD), Sony Corporation, MediaTek Inc., Marvell Technology Group Ltd., Texas Instruments Incorporated, HiSilicon Technologies Co., Ltd., Xilinx, Inc. and Arm Limited.

Key Developments:

In February, 2025, Apple unveiled its first custom-designed modem chip, the C1, marking a strategic shift away from reliance on external suppliers. Debuting in the iPhone 16e, the C1 subsystem enhances battery life and integrates seamlessly with Apple's A18 processor. It also features custom GPS systems and satellite connectivity, though it currently lacks support for millimeter-wave 5G networks.

In October 2024, Qualcomm introduced the Snapdragon 8 Elite, a 3nm mobile processor designed to enhance performance, AI capabilities, and battery efficiency in Android smartphones. The chip features Qualcomm's new Oryon CPU design, achieving speeds up to 4.32 GHz-a 45% improvement over its predecessor.

Types Covered:

  • Digital SoC
  • Analog SoC
  • Mixed-Signal SoC
  • Other Types

Processor Types Covered:

  • Microcontroller (MCU)-based SoC
  • Microprocessor (MPU)-based SoC
  • Application-Specific Integrated Circuit (ASIC)-based SoC
  • Field-Programmable Gate Array (FPGA)-based SoC
  • Other Processor Types

Nodes Covered:

  • 5nm & Below
  • 7nm
  • 10nm-28nm
  • Above 28nm

Architectures Covered:

  • ARM-Based SoC
  • RISC-V SoC
  • x86-Based SoC

End Users Covered:

  • IT & Telecom
  • Aerospace & Defense
  • Automotive
  • Industrial Automation
  • Healthcare
  • Consumer Electronics
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances
Product Code: SMRC29034

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global System On Chip (SoC) Market, By Type

  • 5.1 Introduction
  • 5.2 Digital SoC
  • 5.3 Analog SoC
  • 5.4 Mixed-Signal SoC
  • 5.5 Other Types

6 Global System On Chip (SoC) Market, By Processor Type

  • 6.1 Introduction
  • 6.2 Microcontroller (MCU)-based SoC
  • 6.3 Microprocessor (MPU)-based SoC
  • 6.4 Application-Specific Integrated Circuit (ASIC)-based SoC
  • 6.5 Field-Programmable Gate Array (FPGA)-based SoC
  • 6.6 Other Processor Types

7 Global System On Chip (SoC) Market, By Node

  • 7.1 Introduction
  • 7.2 5nm & Below
  • 7.3 7nm
  • 7.4 10nm-28nm
  • 7.5 Above 28nm

8 Global System On Chip (SoC) Market, By Architecture

  • 8.1 Introduction
  • 8.2 ARM-Based SoC
  • 8.3 RISC-V SoC
  • 8.4 x86-Based SoC

9 Global System On Chip (SoC) Market, By End User

  • 9.1 Introduction
  • 9.2 IT & Telecom
  • 9.3 Aerospace & Defense
  • 9.4 Automotive
  • 9.5 Industrial Automation
  • 9.6 Healthcare
  • 9.7 Consumer Electronics
  • 9.8 Other End Users

10 Global System On Chip (SoC) Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.10 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.10 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Qualcomm Technologies Inc.
  • 12.2 Apple Inc.
  • 12.3 Intel Corporation
  • 12.4 NXP Semiconductors N.V.
  • 12.5 Broadcom Inc.
  • 12.6 STMicroelectronics N.V.
  • 12.7 Samsung Electronics Co., Ltd.
  • 12.8 Micron Technology, Inc.
  • 12.9 Taiwan Semiconductor Manufacturing Company Limited (TSMC)
  • 12.10 Infineon Technologies AG
  • 12.11 NVIDIA Corporation
  • 12.12 Renesas Electronics Corporation
  • 12.13 Advanced Micro Devices, Inc. (AMD)
  • 12.14 Sony Corporation
  • 12.15 MediaTek Inc.
  • 12.16 Marvell Technology Group Ltd.
  • 12.17 Texas Instruments Incorporated
  • 12.18 HiSilicon Technologies Co., Ltd.
  • 12.19 Xilinx, Inc.
  • 12.20 Arm Limited
Product Code: SMRC29034

List of Tables

  • Table 1 Global System On Chip (SoC) Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global System On Chip (SoC) Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global System On Chip (SoC) Market Outlook, By Digital SoC (2024-2032) ($MN)
  • Table 4 Global System On Chip (SoC) Market Outlook, By Analog SoC (2024-2032) ($MN)
  • Table 5 Global System On Chip (SoC) Market Outlook, By Mixed-Signal SoC (2024-2032) ($MN)
  • Table 6 Global System On Chip (SoC) Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 7 Global System On Chip (SoC) Market Outlook, By Processor Type (2024-2032) ($MN)
  • Table 8 Global System On Chip (SoC) Market Outlook, By Microcontroller (MCU)-based SoC (2024-2032) ($MN)
  • Table 9 Global System On Chip (SoC) Market Outlook, By Microprocessor (MPU)-based SoC (2024-2032) ($MN)
  • Table 10 Global System On Chip (SoC) Market Outlook, By Application-Specific Integrated Circuit (ASIC)-based SoC (2024-2032) ($MN)
  • Table 11 Global System On Chip (SoC) Market Outlook, By Field-Programmable Gate Array (FPGA)-based SoC (2024-2032) ($MN)
  • Table 12 Global System On Chip (SoC) Market Outlook, By Other Processor Types (2024-2032) ($MN)
  • Table 13 Global System On Chip (SoC) Market Outlook, By Node (2024-2032) ($MN)
  • Table 14 Global System On Chip (SoC) Market Outlook, By 5nm & Below (2024-2032) ($MN)
  • Table 15 Global System On Chip (SoC) Market Outlook, By 7nm (2024-2032) ($MN)
  • Table 16 Global System On Chip (SoC) Market Outlook, By 10nm-28nm (2024-2032) ($MN)
  • Table 17 Global System On Chip (SoC) Market Outlook, By Above 28nm (2024-2032) ($MN)
  • Table 18 Global System On Chip (SoC) Market Outlook, By Architecture (2024-2032) ($MN)
  • Table 19 Global System On Chip (SoC) Market Outlook, By ARM-Based SoC (2024-2032) ($MN)
  • Table 20 Global System On Chip (SoC) Market Outlook, By RISC-V SoC (2024-2032) ($MN)
  • Table 21 Global System On Chip (SoC) Market Outlook, By x86-Based SoC (2024-2032) ($MN)
  • Table 22 Global System On Chip (SoC) Market Outlook, By End User (2024-2032) ($MN)
  • Table 23 Global System On Chip (SoC) Market Outlook, By IT & Telecom (2024-2032) ($MN)
  • Table 24 Global System On Chip (SoC) Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 25 Global System On Chip (SoC) Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 26 Global System On Chip (SoC) Market Outlook, By Industrial Automation (2024-2032) ($MN)
  • Table 27 Global System On Chip (SoC) Market Outlook, By Healthcare (2024-2032) ($MN)
  • Table 28 Global System On Chip (SoC) Market Outlook, By Consumer Electronics (2024-2032) ($MN)
  • Table 29 Global System On Chip (SoC) Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!