PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1662736
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1662736
According to Stratistics MRC, the Global Autonomous Vehicle Sensors Market is accounted for $10.37 billion in 2024 and is expected to reach $23.37 billion by 2030 growing at a CAGR of 14.5% during the forecast period. Autonomous vehicle sensors are essential for allowing self-driving cars to safely navigate and engage with their surroundings. Radar sensors are used to determine an object's distance and speed, even in bad weather. While LiDAR sensors produce high-resolution three-dimensional maps of the surroundings, cameras record visual information to help detect traffic signals and identify objects. Moreover, for close-range detection, especially when parking or making low-speed maneuvers, ultrasonic sensors are frequently used. By combining these sensors, autonomous cars are able to identify obstructions, make accurate navigational decisions, and protect pedestrians and passengers.
According to the Global Status Report on Road Safety 2018, published by the World Health Organization (WHO), the number of annual road traffic deaths reached 1.35 million in 2018. Road traffic injuries are now the leading killer of people aged 5-29 years.
Increasing R&D spending on autonomous vehicles
Large sums of money are being spent on research and development to hasten the creation and commercialization of autonomous vehicle (AV) technologies as the automotive and technology industries continue to investigate the possibilities of AVs. Along with improving the sensors themselves, these investments are also aimed at improving sensor fusion technologies, which integrate information from several sensors to produce a more thorough and precise picture of the vehicle's surroundings. Additionally, the market for sensors for autonomous vehicles is expected to grow as a result of the push for innovation and cost reduction in sensors, such as LiDAR and radar, which are producing more economical and effective solutions.
Inadequate autonomous vehicle infrastructure
Autonomous vehicle deployment success depends on the surrounding infrastructure in addition to the vehicles themselves. A major problem for manufacturers is that many cities and roads are not set up to accommodate autonomous driving. Roads with unclear lane markings, shoddy intersections, or insufficient signage, for instance, can confuse sensor systems and reduce their efficiency. Furthermore, because autonomous vehicles and road infrastructure cannot communicate, AVs must make all of their decisions using onboard sensors, which may result in performance limitations in some situations.
Fusion of V2X and 5G technologies
The introduction of 5G technology is creating new possibilities for self-driving cars by facilitating Vehicle-to-Everything (V2X) communication-faster, more dependable communication between cars and infrastructure. Moreover, autonomous vehicles, traffic lights, road signs, and other vehicles on the road can all exchange data in real time owing to 5G's low latency and fast connectivity. Because of this improved communication, AVs can make decisions more quickly, increase safety, and navigate challenging environments more effectively. Together with V2X technologies, sensor systems can enhance situational awareness by providing real-time information about accidents, traffic jams, and road conditions.
Risks to cybersecurity and data privacy issues
Autonomous vehicles (AVs) are susceptible to hacking attempts and cyber attacks since they mainly depend on sensors, connectivity, and software to function. Malicious actors may target AVs in an attempt to take advantage of weaknesses in vehicle networks due to the integration of sophisticated sensors and V2X communication systems. Autonomous vehicle safety could be jeopardized by a successful cyber attack, which could result in mishaps or the theft of private information. Additionally, sensor manufacturers may be subject to stringent data protection regulations, such as the GDPR in the EU, which would compel them to make significant investments in strong cybersecurity and data encryption methods.
The market for autonomous vehicle sensors was greatly impacted by the COVID-19 pandemic, which resulted in labor shortages, supply chain disruptions, and factory closures that delayed the development, testing, and deployment of autonomous vehicles. Investments in autonomous vehicle technology, including sensor development, were reduced during the economic downturn as many automakers prioritized their immediate survival. Furthermore, the adoption of autonomous systems was delayed as a result of the slowdown in the automotive industry and the decreased demand for vehicles during lockdowns. But as the world economy steadily improved, contactless and driverless technologies gained attention again, which sparked interest in sensors for secure transportation.
The LiDAR (Light Detection and Ranging) segment is expected to be the largest during the forecast period
The LiDAR (Light Detection and Ranging) segment is expected to account for the largest market share during the forecast period. The precise and high-resolution mapping of the vehicle's environment made possible by LiDAR sensors is crucial for the safe operation of autonomous vehicles because it enables the precise detection of objects, obstacles, and road conditions. These sensors give the car a thorough awareness of its surroundings by measuring distances and producing a detailed three-dimensional map of the area using laser beams. Moreover, LiDAR is still a crucial component of complete autonomy despite its comparatively high cost, and it is frequently combined with other sensor technologies like radar and cameras to improve performance and safety.
The Level 3 (Conditional Automation) segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the Level 3 (Conditional Automation) segment is predicted to witness the highest growth rate. At this degree of automation, cars can manage the majority of driving duties on their own, but in some circumstances-like complicated or unpredictable road conditions-human intervention is necessary. The development of sensor technologies like LiDAR, radar, and cameras, which allow for safer features and more precise decision-making, is what is driving this segment's growth. Additionally, major investments are being made in sensors and artificial intelligence (AI) systems that can carry out tasks like adaptive cruise control, emergency braking, and lane-keeping without constant driver supervision as automakers strive toward conditional automation.
During the forecast period, the North America region is expected to hold the largest market share. Strong presences of significant automakers, tech firms, and sensor suppliers-especially in the US-are what propel the region's dominance. North America has made significant investments in research and development for sensor technologies like LiDAR, radar, and cameras, positioning it as a leader in the creation and testing of autonomous vehicles. Numerous well-known businesses that are leading the way in autonomous vehicle innovation are based in the United States, including Tesla, Waymo, and Uber.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. The automotive industry's explosive growth, particularly in nations like China, Japan, and South Korea where developments in autonomous driving technologies are accelerating significantly, is the main driver of this expansion. China, in particular, is making significant investments in the development of autonomous vehicles and smart mobility solutions, aided by policies and laws that promote creativity. Moreover, the Asia Pacific region is becoming a major hub for the production and deployment of autonomous vehicle sensors as consumer demand for electric and driverless vehicles increases.
Key players in the market
Some of the key players in Autonomous Vehicle Sensors market include Velodyne Lidar, Luminar Technologies, Aeva Technologies, Innoviz Technologies, Ouster, Hesai Group, Mobileye Global Inc., Robert Bosch GmbH, Continental AG, Valeo, Aptiv, ZF Friedrichshafen AG, Magna International, Denso Corporation, Quanergy Systems and Horizon Robotics.
In September 2024, Continental and Vitesco Technologies have reached an agreement based on their corporate separation agreement regarding the appropriate allocation of costs and liabilities from the investigations in connection with the supply of engine control units and engine control software.
In August 2024, DENSO Corporation announced that it has signed a manufacturing license agreement with Ceres Power Holdings (CWR.L), a leading developer of solid oxide cell stack technology. DENSO aims to advance the early practical application of Solid Oxide Electrolysis Cells (SOECs)*1 that produce hydrogen through water electrolysis.
In February 2023, Self-driving sensor maker Luminar Technologies Inc announced an expanded partnership with Mercedes-Benz Group on Wednesday to enable fully automated driving for its next-generation vehicles. Automakers from Tesla Inc to General Motors are focusing on autonomous vehicles, but technological and regulatory hurdles remain.
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.