PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1617218
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1617218
According to Stratistics MRC, the Global RNA Interference (RNAi) Pesticides Market is accounted for $1.40 billion in 2024 and is expected to reach $2.75 billion by 2030 growing at a CAGR of 11.92% during the forecast period. RNA interference pesticides represent an innovative approach in agricultural pest management, leveraging the natural gene-silencing mechanism of RNA interference. Small double-stranded RNA molecules are used in these pesticides to target and inhibit the expression of vital genes in pests, resulting in their death or stunted growth. In contrast to conventional chemical pesticides, RNAi-based solutions are extremely specific, limiting damage to non-target organisms such as beneficial insects and the surrounding ecosystem while only affecting the targeted pest species.
According to the Journal of Agricultural and Food Chemistry, RNAi-based pesticides have shown effectiveness in controlling a wide range of agricultural pests, including insects, nematodes, and fungi, by silencing essential genes in these organisms, leading to a reduction in pest populations by up to 90%.
Demand for targeted and sustainable pest control solutions
The need for sustainable alternatives has increased dramatically as environmental concerns over the widespread use of chemical pesticides have grown. Because RNAi pesticides are species-specific, they meet this need by only destroying the targeted pests and leaving non-target organisms like beneficial insects, birds, or aquatic species unaffected. This accuracy lessens soil and water contamination and ecological disturbances. Additionally, RNAi pesticides are becoming a popular way to strike a balance between sustainability and pest control as farmers and agricultural enterprises face more pressure to implement eco-friendly methods.
Exorbitant RNAi pesticide production costs
The high cost of producing the double-stranded RNA (dsRNA) molecules that are essential to RNA interference (RNAi) technology is one of the major barriers to the market for RNAi pesticides. Large-scale RNA molecule synthesis necessitates sophisticated biotechnology infrastructure, which frequently contributes to higher costs when compared to conventional chemical pesticides. Particularly in cost-sensitive markets like developing nations, this financial barrier prevents RNAi pesticides from being widely adopted. Furthermore, continuous efforts are being made to scale up manufacturing and optimize production techniques, but their adoption may be limited until these costs are drastically decreased.
Growing interest in sustainable farming methods
The emphasis on environmental preservation and sustainability around the world presents RNA interference (RNAi) pesticides with a lot of opportunities. The detrimental effects of conventional chemical pesticides on ecosystems, including soil, water, and beneficial organisms, have prompted farmers, governments, and consumers to look for alternatives. Since RNAi pesticides offer a species-specific, targeted solution with little ecological disturbance, they are ideal for achieving these goals. Moreover, a huge market for RNAi technologies is created by the rising demand for sustainable farming methods, particularly in areas with stringent environmental laws and environmentally conscious consumer populations.
Competition from bio pesticides and well-known pesticides
Traditional chemical pesticides and well-known biopesticides are fierce competitors in the RNA interference (RNAi) pesticide market. The market is dominated by chemical pesticides because of their extensive availability, affordable prices, and decades of demonstrated effectiveness. Furthermore, because of their regulatory approval and environmentally friendly characteristics, biopesticides made from natural sources-such as microbial or botanical extracts-are becoming more and more popular. Due to their established supply chains and greater rates of adoption, both options make it extremely difficult for RNAi pesticides to enter the market and effectively compete.
There were conflicting effects of the COVID-19 pandemic on the market for RNA interference (RNAi) pesticides. Global supply chain disruptions, a shortage of labor, and logistical difficulties, on the one hand, slowed down the manufacturing and distribution of RNAi pesticides, postponing their use in the agricultural industry. Additionally, investments in agricultural innovations, such as RNAi technologies, were decreased as a result of the economic uncertainty during the pandemic. Increased interest in RNAi pesticides as an effective and sustainable way to protect crops resulted from this, opening the door for future expansion as economies recover and the agricultural industry places a higher priority on resilience and innovation.
The Synthetic RNAi Pesticides segment is expected to be the largest during the forecast period
The synthetic RNA interference (RNAi) pesticides segment is expected to hold the largest share in the RNA interference (RNAi) pesticides market. This market is distinguished by the creation and use of synthetic RNA molecules that specifically target pest genes, effectively silencing them and stopping their spread. Since synthetic RNAi pesticides provide a more accurate and eco-friendly substitute for conventional chemical pesticides, the increasing demand for sustainable agricultural practices is a major factor propelling this market. Moreover, they solve major issues with traditional pest control techniques by minimizing off-target effects and lowering the chance of pests becoming resistant.
The Fruits & Vegetables segment is expected to have the highest CAGR during the forecast period
The fruits and vegetables segment of the RNA Interference (RNAi) pesticides market is anticipated to grow at the highest CAGR. The need for efficient pest control methods that reduce pesticide residues and the growing consumer desire for fresh, healthful produce are the main drivers of this growth. Farmers are encouraged to use cutting-edge pest management technologies, like RNAi pesticides, which provide targeted action against particular pests while being environmentally friendly, because fruits and vegetables are high-value crops. Additionally, growing awareness of the advantages of using biopesticides over traditional chemicals and regulatory trends supporting sustainable agricultural practices are also factors contributing to the segment's growth.
The market for RNA interference (RNAi) pesticides is expected to be dominated by the North American region due to the growing use of RNAi technology in agriculture for disease management and pest control. Because of its sophisticated agricultural industry, large biotechnology investments, and supportive regulatory framework for emerging agricultural technologies, the United States in particular makes a substantial contribution. The continuous need for environmentally friendly and sustainable pest control solutions, which RNAi-based products provide by focusing on particular pests without harming non-target organisms, is driving the region's market expansion. Moreover, market dynamics in this area are further enhanced by the growing use of RNAi in crops like fruits, vegetables, and cereals.
In the market for RNA interference (RNAi) pesticides, the Asia-Pacific region is anticipated to grow at the highest CAGR. In nations like China and India, where agriculture is vital to the economy, there is a growing need for efficient pest management solutions due to the expansion of agricultural activities. The adoption of RNAi technology is being driven by the region's emphasis on environmentally friendly pest control techniques as well as government programs encouraging sustainable agricultural practices. Furthermore, supporting this trend is farmers increasing awareness of the advantages of RNAi pesticides, such as their targeted action and less environmental impact.
Key players in the market
Some of the key players in RNA Interference (RNAi) Pesticides market include Vestaron Corporation, Trillium AG, Thermo Fisher Scientific, Syngenta AG, Sumitomo Chemical, Qiagen NV, Phio Pharmaceuticals Corp., Pebble Labs Inc, Merck & Co. Inc, Ionis Pharmaceuticals Inc., GreenLight Biosciences, Elemental Enzymes, Inc, Dicerna Pharmaceuticals (Novo Nordisk A/S), Bayer AG and Arrowhead Pharmaceuticals.
In October 2024, Vestaron Corporation is pleased to announce a long-term strategic agreement with ADM for the production of Vestaron peptide-based crop protection products. This collaboration marks a significant milestone in Vestaron's mission to meet the growing global demand for sustainable and effective crop protection solutions.
In February 2024, Syngenta Crop Protection and Lavie Bio Ltd., a subsidiary of Evogene Ltd, announced an agreement for the discovery and development of new biological insecticidal solutions. The collaboration will leverage Lavie Bio's unique technology platform to rapidly identify and optimize bio-insecticide candidates, as well as Syngenta's extensive global research, development and commercialization capabilities.
In February 2023, Thermo Fisher Scientific Inc. entered into a definitive agreement to acquire CorEvitas, a provider of regulatory-grade, real-world evidence for approved medical treatments and therapies, from Audax Private Equity, for $912.5 million in cash. CorEvitas will become part of Thermo Fisher's Laboratory Products and Biopharma Services segment. The transaction is expected to be completed by the end of 2023.