PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1617157
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1617157
According to Stratistics MRC, the Global Spherical Silicon Carbide Market is accounted for $4.1 billion in 2024 and is expected to reach $8.6 billion by 2030 growing at a CAGR of 13.0% during the forecast period. Spherical Silicon Carbide (SiC) is a high-performance material known for its exceptional hardness, thermal conductivity, and resistance to wear and corrosion. It is synthesized by a chemical process that results in spherical-shaped particles, which offer improved packing density and flowability compared to traditional forms. This form of SiC is commonly used in advanced applications such as abrasives, semiconductor devices, automotive components, and in the production of high-performance ceramics, due to its enhanced mechanical properties and stability under extreme conditions.
Data Centers and high-performance computing
The market, especially in data centers and high-performance computing (HPC), is growing due to SiC's superior thermal conductivity, efficiency, and durability. SiC-based components enhance power conversion and heat dissipation, crucial for managing the high demands of modern data centers and HPC systems. As industries move toward more energy-efficient and scalable solutions, SiC plays a key role in optimizing performance while reducing operational costs.
Intellectual property challenges
Intellectual property (IP) challenges in the market can hinder innovation and market growth. Issues like patent disputes, unauthorized use of proprietary technologies, and lack of clear IP protection may create barriers for new entrants. These challenges could lead to reduced investments, slower technological advancements, and increased operational costs for companies. Consequently, the overall market development might be stifled, limiting competitiveness and global expansion in the industry.
Enhanced power electronics
With its increased efficiency, higher voltage handling, and faster switching capabilities, the market is transforming enhanced power electronics. SiC's ability to operate at elevated temperatures and voltages makes it ideal for power conversion systems in electric vehicles, renewable energy, and industrial applications. Its superior thermal conductivity and low energy loss contribute to reduced operational costs, improving system performance and enabling more compact, efficient, and reliable power electronic devices.
Complexity of manufacturing
The complexity of manufacturing in the market poses significant challenges, leading to higher production costs and longer lead times. The intricate processes required to achieve high-quality material consistency can strain resources and limit scalability. As a result, manufacturers face difficulty meeting growing demand while maintaining competitive pricing. This complexity may also deter new entrants and hinder overall market growth, slowing technological advancements and limiting industry expansion.
The COVID-19 pandemic negatively impacted the market by disrupting global supply chains, delaying production, and causing shortages of raw materials. Lockdowns and labor shortages reduced manufacturing capacity, leading to longer delivery times and increased costs. Additionally, the economic uncertainty resulted in decreased investments and demand from industries reliant on silicon carbide, such as electronics and automotive, slowing market growth during the pandemic's peak.
The thyristors segment is expected to be the largest during the forecast period
The thyristors segment is expected to account for the largest market share during the projection period due to their ability to enhance power control and efficiency in electronic devices. With the growing demand for high-performance semiconductors, silicon carbide-based thyristors are increasingly preferred for their superior thermal conductivity, high-voltage handling, and energy efficiency. Their use in industries like renewable energy, automotive, and power electronics is driving the adoption of spherical silicon carbide, fostering market growth.
The abrasives & refractories segment is expected to have the highest CAGR during the forecast period
The abrasives & refractories segment is expected to have the highest CAGR during the extrapolated period. Silicon carbide's hardness and thermal stability make it ideal for abrasive materials used in cutting, grinding, and polishing. Additionally, its high resistance to heat and wear makes it valuable in refractories for high-temperature industrial processes. As demand for advanced materials in manufacturing and construction grows, the use of spherical silicon carbide in abrasives and refractories is expected to increase, driving market expansion.
North America region is estimated to account for the largest market share during the forecast period due to rising demand across industries such as electronics, automotive, and energy. The region's focus on advanced manufacturing technologies, including power electronics and electric vehicles, is driving the need for high-performance materials. Additionally, its strong infrastructure, technological innovation, and investments in renewable energy projects are contributing to the market's expansion, positioning it as a key player globally.
Asia Pacific is expected to register the highest growth rate over the forecast period. With the shift towards renewable energy sources, particularly solar and wind energy, spherical silicon carbide plays a significant role in power systems and energy storage technologies. It is used in high-performance electronic components such as inverters and converters. Additionally, innovations in production techniques and the development of more cost-effective methods for producing spherical SiC are enhancing its adoption across various industries.
Key players in the market
Some of the key players in Spherical Silicon Carbide market include Nippon Steel Corporation, Dow Inc., Saint-Gobain Ceramic Materials, Cree, Inc., Norstel AB, Entegris, Inc., Microchip Technology Inc., Wacker Chemie AG, Sibelco, Mersen, GE Aviation, Rohm Co., Ltd., STMicroelectronics, Tungsten Corporation, II-VI Incorporated and KYOCERA Corporation.
In December 2024, STMicroelectronics entered into a multi-year agreement with Ampere (part of Renault Group) for the supply of silicon carbide power modules. This collaboration focuses on optimizing power modules for electric vehicle applications, enhancing performance and efficiency in Ampere's electric powertrains.
In May 2024, Dow Chemical International Private Limited announced collaboration with Glass Wall Systems India to supply carbon neutral silicone sealants for building facades. This agreement marks a significant step towards reducing embodied carbon in construction materials, utilizing Dow's DOWSIL(TM) Facade Sealants from its Decarbia(TM) portfolio, which emphasizes sustainability in the building and infrastructure sector.
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.