PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1587677
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1587677
According to Stratistics MRC, the Global Autonomous Mobile Robots (AMR) Market is accounted for $2.22 billion in 2024 and is expected to reach $6.48 billion by 2030 growing at a CAGR of 19.5% during the forecast period. Autonomous Mobile Robots (AMRs) are sophisticated robots that can navigate and function on their own in changing environments without assistance from humans. AMRs can map their environment, identify obstacles, and make decisions in real time to maximize their movements owing to sensors, cameras, and machine learning algorithms. In contrast to conventional automated guided vehicles (AGVs), which depend on predetermined routes or physical markers, AMRs employ advanced onboard intelligence to adjust to changing circumstances.
According to a study by MIT's Center for Transportation and Logistics, the adoption of AMRs can lead to a 30-50% reduction in labor costs for warehouse operations, as these robots can work continuously without the need for breaks, handling repetitive tasks more efficiently than human workers.
Drive for industrial automation
One of the key factors propelling the AMR market is the drive towards industrial automation. Automation technologies are becoming more and more popular as businesses look to increase efficiency and productivity. Because they handle materials, manage inventories, and transport people within buildings, AMRs are essential to this shift. AMRs assist organizations in meeting higher operational standards by decreasing human error and boosting throughput. Furthermore, the smooth cooperation of robots and human workers made possible by the integration of AMRs into current workflows results in enhanced productivity and process optimization.
Expensive initial outlay
The high initial investment needed to implement AMR is one of the biggest obstacles. Large sums of money must be set aside by organizations for the purchase of hardware, infrastructure modification, and software development that meet their unique requirements. This covers the price of buying sensors, robotics, and other necessary hardware in addition to the cost of modifying current charging stations and navigation systems as needed. Additionally, it frequently takes a great deal of software customization and technical know-how to integrate AMRs with existing enterprise systems, such as Warehouse Management Systems (WMS) or Enterprise Resource Planning (ERP) systems.
Personalization for sector-specific uses
The customization of AMR technology to satisfy the particular needs of various industries represents one of the most promising opportunities. In the healthcare industry, for example, AMRs can be customized to perform duties like delivering supplies, handling linen, and even helping with surgeries, improving operational effectiveness while maintaining safety. These autonomous robots navigate store aisles and replenish shelves, which enhances inventory management and order fulfillment procedures in retail and e-commerce. Furthermore, AMRs' adaptability to particular operational requirements in a variety of industries creates new opportunities for innovation and market penetration.
Insufficient skilled work
One of the biggest obstacles to market expansion is the lack of skilled workers who can operate and maintain AMRs. Finding skilled workers who can efficiently oversee robotic fleets and resolve technical problems is a challenge for many organizations. In addition to impeding the broad implementation of AMRs, this shortage raises the need for outside service providers for upkeep and support, which can raise expenses and make operations less efficient. Moreover, to overcome this obstacle and create a skilled labor pool that can support sophisticated robotic systems, large investments in workforce training programs and educational initiatives are needed.
The market for autonomous mobile robots (AMR) was greatly impacted by the COVID-19 pandemic, which sped up its expansion and uptake in a number of industries. Many companies looked to AMRs to increase productivity and preserve continuity as social distancing policies and workforce constraints caused operational disruptions. The need for automation increased, especially in the healthcare and logistics industries, where AMRs were used for tasks like order fulfilment, inventory management, and facility disinfection to reduce the spread of viruses. Furthermore, the growth of e-commerce during the pandemic increased demand for automated warehousing solutions, making AMRs crucial instruments for satisfying customers' increased demands for order processing speed and accuracy.
The Self-Driving Forklifts segment is expected to be the largest during the forecast period
The autonomous mobile robot (AMR) market is expected to be dominated by the self-driving forklift segment. Because it can increase the efficiency of material handling in manufacturing facilities and warehouses, this market has grown significantly. Without human assistance, self-driving forklifts are made to move objects, negotiate challenging situations, and maximize storage capacity. By automating repetitive tasks, their integration into logistics operations enables businesses to lower labor costs, minimize human error, and increase safety. Moreover, self-driving forklifts are positioned as crucial equipment for contemporary manufacturing and warehousing operations as the need for automation grows, especially in response to the expansion of e-commerce and the requirement for effective supply chain management.
The Lithium-Ion Battery segment is expected to have the highest CAGR during the forecast period
In the market for autonomous mobile robots (AMR), the lithium-ion battery segment is anticipated to grow at the highest CAGR. Lithium-ion batteries are perfect for contemporary AMRs that need effective and portable energy solutions, and their high energy density and lightweight power sources are driving this growth. Compared to conventional lead batteries, lithium-ion batteries have a number of benefits, such as quicker charging times, a longer lifespan, and better performance across a range of temperature conditions. Additionally, the need for sophisticated battery solutions that can meet the operational requirements of AMRs is growing as industries continue to implement automation technologies.
The autonomous mobile robot (AMR) market is dominated by the European region. The growing need for sophisticated material-handling equipment in manufacturing and transportation facilities across a range of industries is what is causing this dominance. European nations are leading the way in implementing automation technologies to boost output and operational effectiveness, especially in industries like logistics, automotive, and pharmaceuticals. Furthermore, an atmosphere favourable to the development of AMR technology has been created by the region's strong industrial base and large investments in research and development.
The autonomous mobile robots (AMR) market is expected to grow at the highest CAGR in the Asia-Pacific region. The main cause of this quick expansion is the growing e-commerce industry in developing countries, which has raised demand for effective logistics and inventory management systems. Leading nations in this trend include China, Japan, and India, which make significant investments in automation technologies to boost output and optimize their manufacturing and logistics industries. Moreover, the deployment of AMRs in a variety of applications, such as picking, sorting, and palletizing, is further supported by the integration of cutting-edge technologies like artificial intelligence and 5G networks.
Key players in the market
Some of the key players in Autonomous Mobile Robots (AMR) market include Omron Corporation, Boston Dynamics, Daifuku Co., Ltd., Conveyo Technologies, ABB, Teradyne Inc., Kuka AG, Hyster-Yale Materials Handling, Inc., Clearpath Robotics, Inc., Toyota Material Handling, Inc., John Bean Technologies Corporation (JBT), Bastian Solutions, LLC., Crown Equipment Corporation, Mobile Industrial Robots and OTTO Motors.
In October 2024, ABB has signed a Memorandum of Understanding (MoU) with Carbon Re, an industrial artificial intelligence provider, to assess ways to accelerate the decarbonization of cement production while improving productivity.
In November 2023, Teradyne, Inc., a leading supplier of automated test solutions, and Technoprobe S.p.A., a leader in the design and production of probe cards, announced they have entered into a series of agreements establishing a strategic partnership that is expected to accelerate growth for both companies and enable them to offer higher performance semiconductor test interfaces to their customers worldwide.
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.