PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1587649
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1587649
According to Stratistics MRC, the Global Lead Acid Battery Recycling Market is accounted for $12.3 billion in 2024 and is expected to reach $24.6 billion by 2030 growing at a CAGR of 12.2% during the forecast period. Recycling lead-acid batteries involves repurposing elements from old batteries, which are frequently utilized in industrial, automotive, and backup power applications. Batteries are broken down in order to separate the lead, acid, and plastic components, enabling safe reuse. Lead is removed, cleaned, and melted from the batteries after they are gathered, crushed, and separated in order to make new batteries or other lead products. Chemicals are neutralized or transformed into beneficial molecules, while plastic containers are cleaned and reused.
According to the International Energy Agency (IEA), in 2023, battery electric vehicle sales were recorded at 2.2 million, an increase of 4.95 times compared to 2019. The number has risen significantly as countries worldwide focus on NET zero carbon emission targets and replace hydrocarbons with clean fuel energy sources.
Increasingly stringent regulations globally
Standard Operating Procedures (SOPs) have been implemented by the Indian Ministry of Environment to regulate recycling operations. These SOPs require facilities to secure legitimate authorizations and follow stringent pollution control guidelines. Safe battery breaking procedures, appropriate acid management, and pollution control devices for battery transportation are required by these rules in order to stop leaks and emissions.
Complex recycling process
Lead-acid battery recycling is a multi-stage process that includes collecting, breaking, separation, and purification. Because each step calls for certain tools and knowledge, formal recyclers may have to pay more for their operations. Batteries, for example, need to be broken down using hammer mills after collecting, and then hydro-separated to separate various components, such as plastic and lead. The procedure becomes even more complicated and costly when lead is finally purified to eliminate impurities hampering markets growth.
Economic benefits of recycling
Lead-acid battery recycling uses about 85% of the lead produced worldwide from used batteries, allowing for the recovery of vital elements including lead, sulfuric acid, and plastic. This approach reduces dependency on imported raw materials, stabilizing market prices and conserving natural resources. In addition to improving energy efficiency, recycling lead from old batteries lowers production costs and lessens the environmental impact of mining operations.
Competition from alternative batteries
The rise of advanced battery technologies, such as lithium-ion, is transforming the energy storage industry. These alternatives offer higher energy densities, longer lifespans, and faster charging times than lead-acid batteries. As industries and consumers adopt these for electric vehicles and renewable energy storage, demand for lead-acid batteries is expected to decrease, potentially reducing the volume of used batteries available for recycling.
The COVID-19 pandemic had a moderate impact on the lead-acid battery recycling market, primarily disrupting supply chains and reducing demand across various industries. Lockdowns and restrictions led to temporary closures of manufacturing plants, which in turn hindered the collection and processing of used batteries. However, as economies began to recover, the market is projected to grow, driven by rising environmental awareness and government support for recycling initiatives
The flooded lead acid batteries segment is expected to be the largest during the forecast period
The flooded lead acid batteries segment is predicted to secure the largest market share throughout the forecast period because flooded lead-acid batteries are a significant source of lead, a highly recycled metal. Recycling these batteries allows for 85% of lead recovery, reducing the need for mining new lead and minimizing environmental degradation. The flooded batteries contain recoverable materials like sulfuric acid and plastic, which can be repurposed for new battery production encouraging the market.
The electronics segment is expected to have the highest CAGR during the forecast period
During the projection period, the electronics segment is expected to grow at the highest CAGR owing to advanced separation technologies that have been developed as a result of electronic breakthroughs, increasing the recovery rates of precious materials from lead-acid batteries. For example, modern gravity-based systems can save up to 50% on energy use while efficiently separating lead, plastic in use and electrolytes1. As a result, the environmental impact is reduced and recoverable material yields are increased.
The North America region is projected to account for the largest market share during the forecast period because the U.S. and Canada have strict regulations mandating the proper disposal and recycling of hazardous lead-acid batteries, promoting sustainable practices. This is supported by the Resource Conservation and Recovery Act and the Canada-Wide Action Plan. Further the increased environmental awareness and corporate responsibility drive demand for lead-acid battery recycling.
During the estimation period, the Asia Pacific region is forecasted to record the highest growth rate due to the widespread use in automotive, backup power, and industrial applications. Major consumers include China, India, and Japan. The market is also positioned for growth due to the growing focus on sustainable practices and regulatory compliance, with companies offering efficient and environmentally friendly recycling services.
Key players in the market
Some of the key players in Lead Acid Battery Recycling Market include Aqua Metals, Aurubis AG, Battery Recyclers of America, Battery Solutions, Call2Recycle, Inc, Campine n.v., Cirba Solutions, Contemporary Amperex Technology Co. Ltd., EnerSys, Exide, Glencore, Gravita India Ltd, SNAM and Umicore.
In October 2024, Exide Technologies launched innovative lithium-ion Solition Material Handling battery. Featuring advanced lithium iron phosphate technology, this battery is engineered to enhance reliability, safety, and total cost of ownership for material handling fleets.
In August 2024, Aqua Metals, Inc. provided an update on its progress and strategic initiatives. Development of its first commercial scale black mass recycling facility, the Sierra ARC, has progressed throughout Q2, including completion of a five megawatt upgrade.
In March 2024, Aqua Metals and 6K Energy signed strategic supply agreement to establish North America's first sustainable lithium battery supply chain. This supply agreement marks a pioneering step in building North American battery manufacturing capacity.