PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1577207
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1577207
According to Stratistics MRC, the Global Hydroelectric Power Generation Market is accounted for $256.7 billion in 2024 and is expected to reach $405.16 billion by 2030 growing at a CAGR of 7.9% during the forecast period. Hydroelectric power generation is the process of converting the energy of flowing or falling water into electricity. This is achieved by using dams or run-of-the-river systems to harness the kinetic energy of water. The water drives turbines connected to generators, producing electrical energy. Hydropower is a renewable and sustainable energy source, offering benefits such as low greenhouse gas emissions, energy security, and the ability to provide base load power. It plays a crucial role in global efforts to transition to cleaner energy systems and combat climate change.
Rising Demand for Clean Energy
Rising demand for clean energy impacts the market by driving investments in renewable energy sources. Governments, businesses, and consumers are increasingly prioritizing hydropower due to its low carbon footprint and ability to provide reliable base load energy. As nations pursue decarbonization targets and reduce fossil fuel dependency, hydroelectricity plays a key role in meeting sustainability goals. This trend encourages infrastructure upgrades, new hydropower projects, and the adoption of technologies like pumped storage, fostering market growth and energy security.
High Initial Costs
High initial costs impact the market by creating financial barriers for new projects. Building dams, reservoirs, and turbines requires significant capital investment, making it challenging for smaller developers and limiting project development in some regions. These costs also increase the time required to achieve profitability. Governments often need to provide subsidies or public-private partnerships to encourage investments. Thus, it hinders the growth of the market.
Energy Security and Grid Stability
Energy security and grid stability are crucial components, as they ensure a reliable and consistent energy supply. Hydropower facilities can provide baseload electricity, helping to balance fluctuations from intermittent renewable sources like solar and wind. This reliability enhances grid stability and reduces dependence on fossil fuels, mitigating energy supply risks. As countries prioritize energy independence and sustainability, investments in hydroelectric infrastructure are likely to increase, supporting long-term growth in the market and contributing to overall energy resilience.
Climate Variability
Climate variability affects the market by altering water availability due to changing precipitation patterns, droughts, and glacial melt. Reduced water flow limits energy production, impacting reliability and profitability. Seasonal fluctuations may also strain operations, requiring alternative energy sources to meet demand. Prolonged climate challenges may discourage future investments in hydro projects, complicate planning, and strain grid stability, thus it hampers the growth of the market.
The COVID-19 pandemic disrupted the hydroelectric power generation market due to delays in infrastructure projects, labor shortages, and supply chain issues. Reduced electricity demand during lockdowns also impacted revenues. However, the crisis highlighted the importance of reliable renewable energy sources like hydroelectricity in maintaining grid stability. Governments and energy providers have since renewed their focus on sustainable energy investments, helping the market recover and align with long-term decarbonization goals.
The irrigation segment is expected to be the largest during the forecast period
The irrigation segment is expected to be the largest during the forecast period because Hydroelectric dams with irrigation systems contribute to agricultural productivity, stabilizing local economies. Additionally, water released for irrigation can also be harnessed for power generation, improving energy efficiency. This synergy ensures optimal use of water resources, supporting sustainable energy production and food security. However, balancing water allocation for energy and agriculture is crucial to prevent conflicts and ensure long-term sustainability.
The pumped storage segment is expected to have the highest CAGR during the forecast period
The pumped storage segment is expected to have the highest CAGR during the forecast period because it stores excess electricity during low demand by pumping water to higher reservoirs, which is then released to generate power during peak demand. This technology enables better integration of intermittent renewable sources like solar and wind, ensuring a reliable energy supply. Pumped storage also reduces the need for fossil fuel-based peaking plants, contributing to a cleaner energy mix and supporting efforts toward decarbonization and energy efficiency.
North America is projected to hold the largest market share during the forecast period as a renewable energy source, hydroelectric power contributes to reducing greenhouse gas emissions and dependence on fossil fuels. The region's investment in aging infrastructure upgrades enhances efficiency and reliability. Additionally, increasing demand for clean energy, driven by environmental policies and consumer preferences, propels the growth of this market
Asia Pacific is projected to witness the highest CAGR over the forecast period because as countries invest in hydroelectric projects, they enhance local economies through job creation and infrastructure development. Furthermore, hydroelectric power supports the transition to sustainable energy systems, helping to meet growing electricity demand while mitigating environmental impacts. This shift fosters a cleaner energy landscape, contributing to regional commitments towards climate change mitigation and sustainable development.
Key players in the market
Some of the key players in Hydroelectric Power Generation Market include ABB Ltd., Alstom SA, Andritz Hydro , BC Hydro, China Yangtze Power Co., Duke Energy , Eletrobras, engie, GE Renewable Energy, Hydro-Quebec, Iberdrola, Mitsubishi Electric Corporation, NextEra Energy, Inc., NTPC Limited, Pacific Hydro, RusHydro, Siemens Energy, Statkraft AS, Toshiba Energy Systems & Solutions Corporation and Voith Hydro.
In October 2024, Mitsubishi Electric Corporation announced that it signed a memorandum of understanding with VTT Technical Research Centre of Finland Ltd., to collaborate on the development of key nature-positive technologies, which are initially expected to include direct ocean capture (DOC) technology for the direct removal of CO2 from seawater.
In December 2022, Siemens Energy and Georgia Tech announced signing of master research agreement to expand its work with leading research universities on a broad range of energy technologies.
In July 2022, Siemens Energy expanded its Innovation Center - Orlando, the company's largest and first global hub for innovation dedicated to accelerating the development of products and solutions to drive the energy transition through collaboration, rapid prototyping, and testing.