PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1569760
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1569760
According to Stratistics MRC, the Global Automotive Battery Thermal Management System Market is accounted for $6.36 billion in 2024 and is expected to reach $16.83 billion by 2030 growing at a CAGR of 17.6% during the forecast period. The proper operating temperature of batteries in electric and hybrid vehicles must be maintained, and this requires an automotive battery thermal management system, or BTMS. Maintaining a safe temperature range for the battery is crucial as it avoids overheating or cooling down, which can result in decreased performance, shortened battery life, or even potential safety hazards. Moreover, the development of thermal management systems is essential to increasing the efficiency of batteries, increasing the range of electric vehicles (EVs), and guaranteeing the general safety and dependability of EVs as EV adoption rises.
According to the International Energy Agency (IEA), global electric car sales reached nearly 14 million in 2023. Electric car sales are projected to reach around 17 million by the end of 2024.
Growing uptake of electric cars (EVs)
The Automotive Battery Thermal Management System (BTMS) Market is primarily driven by the swift global shift towards electric vehicles. Due to growing fuel prices and environmental concerns, consumers are favoring electric vehicles (EVs) over conventional internal combustion engine (ICE) vehicles more and more. As a result, there is a greater need than ever for effective and dependable battery management systems. As it helps keep the battery within a certain temperature range, battery thermal management is crucial to maximizing the performance and lifespan of EV batteries. Additionally, this ensures consistent power output, quicker charging, and an extended driving range.
Integration of systems complexity
It is an extremely difficult process that calls for precise engineering knowledge and advanced engineering skills to integrate a strong BTMS into electric vehicles. The entire architecture of the car, including the cooling circuits, power electronics, and battery modules, must be seamlessly integrated with the BTMS. For automakers, ensuring interoperability amongst different components while preserving the vehicle's overall efficiency can be quite difficult. Furthermore, significant redesign work is needed to integrate BTMS into current vehicle platforms, which can lengthen development times and complicate the process.
Infrastructure development for fast charging
There is a growing need for BTMS solutions that can handle the extra heat produced during rapid charging as fast-charging networks become more widely used. While convenient, fast charging has the potential to shorten battery life by causing overheating or, in the worst case, pose safety risks. The chance exists for BTMS manufacturers to create cutting-edge cooling systems that can swiftly and effectively dissipate heat during fast charging sessions, guaranteeing the battery's longevity and safety. Moreover, BTMS manufacturers have the chance to collaborate with EV charging companies to offer integrated solutions that maximize battery performance and safety during high-speed charging owing to the fast charging infrastructure.
Market stagnation and economic downturn
Recessions and downturns in the economy can have a big effect on consumer spending and auto sales. Consumers and companies may postpone or cut back on purchases of new cars, especially electric and hybrid models that call for sophisticated BTMS, during uncertain economic times. In response to lower sales and profitability, automakers may also reduce their research and development (R&D) spending, including expenditures for thermal management technologies. Additionally, this decreased spending has the potential to impede market expansion and slow the adoption of new BTMS technologies, especially if unfavorable economic conditions persist for an extended length of time.
Due to production delays, disruptions in global supply chains, and shortages of raw materials, the COVID-19 pandemic had a major effect on the automotive battery thermal management system (BTMS) market. Lockdowns and lower customer demand caused the automotive industry to experience lower car sales and manufacturing slowdowns. As a result, investments in cutting-edge technologies, like BTMS, temporarily decreased. But as the globe slowly heals, the pandemic has also boosted interest in safer and more efficient battery technology as well as the adoption of electric vehicles. Furthermore, this has rekindled the market for BTMS expansion as manufacturers adjust to changing consumer demands and changing environmental conditions.
The Passenger Cars segment is expected to be the largest during the forecast period
The market segment with the largest share in the automotive battery thermal management system market is passenger cars. The primary reason for this dominance is the large number of passenger cars on the road, which goes hand in hand with the growing popularity of electric and hybrid vehicles. These vehicles need sophisticated thermal management systems to guarantee the longevity and efficiency of their batteries. Additionally, there is a growing need for efficient thermal management solutions that keep batteries at the ideal temperature and avoid overheating as passenger cars integrate increasingly complex battery systems to satisfy performance and environmental regulations.
The Battery Electric Vehicle (BEV) segment is expected to have the highest CAGR during the forecast period
The battery electric vehicle (BEV) segment is anticipated to have the highest CAGR due to rising adoption of electric vehicles (EVs) brought about by environmental regulations, battery technology advancements, and consumer demand for environmentally friendly transportation options, BEVs are predicted to grow rapidly. Moreover, because BEVs only run on electricity, it's essential to manage the heat in their batteries well in order to maintain longevity, safety, and optimal performance. As a result, the expanding market for BEVs is driving up demand for sophisticated thermal management systems that can regulate battery temperatures under a range of operating situations.
In the Automotive Battery Thermal Management System (BTS) market, the Asia-Pacific region has the largest market share. Major automakers heavy presence and the quickly expanding electric vehicle market in nations like China, Japan, and South Korea are the main causes of this dominance. The need for effective thermal management systems is further fueled by the region's cutting-edge automotive infrastructure, encouraging government regulations encouraging the use of electric vehicles, and significant investments in battery research and development. Furthermore, as the market leader in terms of both production and consumption, the Asia-Pacific area continues to be a vital hub for automotive thermal management solutions.
The automotive battery thermal management system (BTS) market is growing at the highest growth rate in the Europe region. The adoption of electric vehicles (EVs) and, by extension, sophisticated thermal management systems is being propelled by Europe's stronger commitment to sustainability and more stringent emissions regulations, which are largely responsible for this growth. Battery thermal management solution development and implementation are accelerating due to the European Union's aggressive targets for cutting carbon emissions and promoting green technologies. Moreover, the strong market growth in the region is also being aided by significant investments being made in EV technology and thermal management breakthroughs by top automakers and technological innovators in nations like Germany, France, and the UK.
Key players in the market
Some of the key players in Automotive Battery Thermal Management System market include LG Chem Ltd., Gentherm Inc, MAHLE GmbH, CapTherm Systems Inc., Robert Bosch GmbH, Hanon Systems, Dana Incorporated, Samsung SDI Co., Ltd, Calsonic Kansei Corporation, Valeo, Continental AG and VOSS Automotive GmbH.
In June 2024, Gentherm and Cognizant sign Agreement for Strategic Product Engineering Services and Development of a New Delivery Center. The global market leader of innovative thermal management and pneumatic comfort technologies for the automotive industry and a leader in medical patient temperature management systems.
In May 2024, LG Chem Ltd. on Wednesday signed an agreement with Saudi Arabia's Alkhorayef Group to build a water treatment plant in the Middle Eastern nation and jointly invest up to 320 million riyal ($85.3 million) in the facility. The plant will produce reverse osmosis (RO) membranes, which are used to remove salts and other minerals from seawater and generate potable water, starting in 2026.
In April 2024, MAHLE Behr GmbH & Co. KG, a subsidiary of MAHLE Group, and HELLA GmbH & Co. KGaA successfully completed the sale of their respective 50 percent stake in the joint venture Behr-Hella Thermocontrol ("BHTC") to AUO Corporation. The parties had signed an agreement to sell the shares on 2 October 2023; the transaction has now been approved by the relevant authorities. The total purchase price is based on an enterprise value of € 600 million.