Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1558279

Cover Image

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1558279

Inertial Measurement Unit Market Forecasts to 2030 - Global Analysis By Platform (Airborne, Ground, Maritime and Space), Grade, Component, Technology, Application, End User and By Geography

PUBLISHED:
PAGES: 200+ Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
PDF (Single User License)
USD 4150
PDF (2-5 User License)
USD 5250
PDF & Excel (Site License)
USD 6350
PDF & Excel (Global Site License)
USD 7500

Add to Cart

According to Stratistics MRC, the Global Inertial Measurement Unit Market is accounted for $20.9 billion in 2024 and is expected to reach $37.3 billion by 2030 growing at a CAGR of 10.1% during the forecast period. An Inertial Measurement Unit (IMU) is an electronic device that measures and reports an object's specific force, angular rate, and sometimes magnetic field. It typically consists of accelerometers, gyroscopes, and magnetometers that provide data on an object's acceleration, rotational velocity, and orientation. IMUs are crucial in navigation systems, robotics, and aerospace applications, enabling precise tracking and control of motion. They contribute to determining position, velocity, and attitude, enhancing the accuracy and stability of various systems.

According to the Office of Management and Budget, the United States spent $725 billion on national defense development in fiscal year 2020. This is equivalent to 11% of federal spending.

Market Dynamics:

Driver:

Increase in smartphone production

Smartphones increasingly integrate IMUs for enhanced functionality, including precise motion sensing, augmented reality, and improved user interface experiences. As smartphones become more advanced, the need for compact and highly accurate IMUs grows, driving manufacturers to innovate and expand production capabilities. This trend not only supports the evolution of smartphone features but also propels growth in the market, reflecting the expanding role of motion sensors in consumer electronics.

Restraint:

Measurement errors due to mechanical components

Measurement errors due to mechanical components in an IMU can significantly impact performance and accuracy. Mechanical inaccuracies, such as misalignment or component wear, can introduce biases and drift in sensor readings, leading to erroneous motion data. This degradation in precision affects applications relying on IMUs for navigation, stabilization, and control, potentially compromising system reliability. As a result, systems may exhibit reduced performance, requiring frequent recalibration and impacting overall operational efficiency.

Opportunity:

Expansion of the aviation industry

The expansion of the aviation industry has driven increased demand for the market due to their critical role in aircraft navigation and control systems. Modern aviation relies on advanced IMUs for precise flight dynamics, stability, and navigation, enhancing safety and performance. As airlines invest in new aircraft and upgrade existing fleets, the need for high-performance IMUs grows, fostering innovation and growth in the IMU market. This trend supports the development of more sophisticated and reliable aviation technologies.

Threat:

Operational complexity and maintenance costs

Operational complexity and maintenance costs in the market can pose significant challenges. High-precision IMUs often require complex calibration and alignment procedures, demanding specialized knowledge and equipment. Additionally, the need for regular maintenance and recalibration to ensure accuracy can lead to increased operational costs. These factors can strain resources, particularly in systems where IMUs are integral to critical applications, such as aerospace and robotics, impacting overall system efficiency and budget.

Covid-19 Impact:

The COVID-19 pandemic had a notable impact on the market, disrupting supply chains and manufacturing processes. Lockdowns and restrictions led to delays in production and shortages of critical components. Additionally, reduced demand from sectors like aerospace and automotive, due to economic slowdowns, affected market growth. However, the increased focus on remote work and healthcare innovations has driven some demand for IMUs in new applications, partially offsetting the pandemic's negative effects.

The navigation grade segment is expected to be the largest during the forecast period

The navigation grade is expected to be the largest during the forecast period. IMUs offer superior accuracy in measuring acceleration and angular rates, crucial for precise navigation and stability control. Their advanced performance characteristics support complex tasks like GPS-denied navigation and aircraft guidance. As demand for sophisticated navigation systems grows, the need for navigation-grade IMUs continues to expand, driving innovation and growth in this segment.

The railway systems segment is expected to have the highest CAGR during the forecast period

The railway systems segment is expected to have the highest CAGR during the forecast period. IMUs provide precise motion sensing and tracking, enabling real-time monitoring of train dynamics, track alignment, and passenger comfort. They support advanced applications such as automatic train control, collision avoidance, and condition-based maintenance. As the railway industry embraces modern technologies for improved performance and safety, the integration of IMUs becomes more vital, driving growth in this specialized market segment.

Region with largest share:

North America is projected to hold the largest market share during the forecast period. Advanced IMUs are crucial for applications such as autonomous vehicles, aircraft navigation, and military systems, where precision and reliability are paramount. The region's emphasis on technological innovation and investment in research and development further drives market expansion. Additionally, the presence of major IMU manufacturers and increasing adoption of smart technologies contribute to the market's growth.

Region with highest CAGR:

Asia Pacific is projected to witness the highest CAGR over the forecast period driven by rapid technological advancements and increasing demand across various sectors. The growth is also supported by increasing defense spending and technological upgrades in various sectors. Additionally, the proliferation of smartphones, wearables, and IoT devices in consumer electronics further accelerates the market. Overall, the market is poised for robust expansion, driven by technological innovation and sectoral growth.

Key players in the market

Some of the key players in Inertial Measurement Unit market include Analog Devices, Inc., Bosch Sensortec, Honeywell International Inc., Northrop Grumman Corporation, STMicroelectronics, VectorNav Technologies, TDK Corporation, Raytheon Technologies, Trimble Inc., Sensonor AS, Kolmorgen, Siemens AG, Thales Group, Delphi Technologies and L3 Technologies.

Key Developments:

In October 2023, Honeywell has introduced a new small, lightweight Inertial Measurement Unit (IMU) specifically designed for a wide array of defense, industrial and autonomous applications across air, land and sea vehicles and related equipment.

In September 2023, Honeywell and Civitanavi Systems have launched a new inertial measurement unit for commercial and defense customers worldwide. The HG2800 family consists of low-noise, high-bandwidth, high-performance, tactical-grade inertial measurement units designed for pointing, stabilization and short-duration navigation on commercial and military aircraft, among other applications.

Platforms Covered:

  • Airborne
  • Ground
  • Maritime
  • Space

Grades Covered:

  • Marine Grade
  • Navigation Grade
  • Tactical Grade
  • Space Grade
  • Commercial Grade

Components Covered:

  • Accelerometers
  • Gyroscopes
  • Magnetometers

Technologies Covered:

  • Micro-Electro-Mechanical Systems (MEMS)
  • Fiber Optic Gyro (FOG)
  • Ring Laser Gyro (RLG)
  • Mechanical Gyro
  • Other Technologies

Applications Covered:

  • Aircraft
  • Passenger Vehicles
  • Robotics
  • Railway Systems
  • Smartphones
  • Other Applications

End Users Covered:

  • Aerospace and Defense
  • Consumer Electronics
  • Automotive
  • Industrial
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances
Product Code: SMRC27143

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Inertial Measurement Unit Market, By Platform

  • 5.1 Introduction
  • 5.2 Airborne
  • 5.3 Ground
  • 5.4 Maritime
  • 5.5 Space

6 Global Inertial Measurement Unit Market, By Grade

  • 6.1 Introduction
  • 6.2 Marine Grade
  • 6.3 Navigation Grade
  • 6.4 Tactical Grade
  • 6.5 Space Grade
  • 6.6 Commercial Grade

7 Global Inertial Measurement Unit Market, By Component

  • 7.1 Introduction
  • 7.2 Accelerometers
  • 7.3 Gyroscopes
  • 7.4 Magnetometers

8 Global Inertial Measurement Unit Market, By Technology

  • 8.1 Introduction
  • 8.2 Micro-Electro-Mechanical Systems (MEMS)
  • 8.3 Fiber Optic Gyro (FOG)
  • 8.4 Ring Laser Gyro (RLG)
  • 8.5 Mechanical Gyro
  • 8.6 Other Technologies

9 Global Inertial Measurement Unit Market, By Application

  • 9.1 Introduction
  • 9.2 Aircraft
  • 9.3 Passenger Vehicles
  • 9.4 Robotics
  • 9.5 Railway Systems
  • 9.6 Smartphones
  • 9.7 Other Applications

10 Global Inertial Measurement Unit Market, By End User

  • 10.1 Introduction
  • 10.2 Aerospace and Defense
  • 10.3 Consumer Electronics
  • 10.4 Automotive
  • 10.5 Industrial
  • 10.6 Other End Users

11 Global Inertial Measurement Unit Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Analog Devices, Inc.
  • 13.2 Bosch Sensortec
  • 13.3 Honeywell International Inc.
  • 13.4 Northrop Grumman Corporation
  • 13.5 STMicroelectronics
  • 13.6 VectorNav Technologies
  • 13.7 TDK Corporation
  • 13.8 Raytheon Technologies
  • 13.9 Trimble Inc.
  • 13.10 Sensonor AS
  • 13.11 Kolmorgen
  • 13.12 Siemens AG
  • 13.13 Thales Group
  • 13.14 Delphi Technologies
  • 13.15 L3 Technologies
Product Code: SMRC27143

List of Tables

  • Table 1 Global Inertial Measurement Unit Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Inertial Measurement Unit Market Outlook, By Platform (2022-2030) ($MN)
  • Table 3 Global Inertial Measurement Unit Market Outlook, By Airborne (2022-2030) ($MN)
  • Table 4 Global Inertial Measurement Unit Market Outlook, By Ground (2022-2030) ($MN)
  • Table 5 Global Inertial Measurement Unit Market Outlook, By Maritime (2022-2030) ($MN)
  • Table 6 Global Inertial Measurement Unit Market Outlook, By Space (2022-2030) ($MN)
  • Table 7 Global Inertial Measurement Unit Market Outlook, By Grade (2022-2030) ($MN)
  • Table 8 Global Inertial Measurement Unit Market Outlook, By Marine Grade (2022-2030) ($MN)
  • Table 9 Global Inertial Measurement Unit Market Outlook, By Navigation Grade (2022-2030) ($MN)
  • Table 10 Global Inertial Measurement Unit Market Outlook, By Tactical Grade (2022-2030) ($MN)
  • Table 11 Global Inertial Measurement Unit Market Outlook, By Space Grade (2022-2030) ($MN)
  • Table 12 Global Inertial Measurement Unit Market Outlook, By Commercial Grade (2022-2030) ($MN)
  • Table 13 Global Inertial Measurement Unit Market Outlook, By Component (2022-2030) ($MN)
  • Table 14 Global Inertial Measurement Unit Market Outlook, By Accelerometers (2022-2030) ($MN)
  • Table 15 Global Inertial Measurement Unit Market Outlook, By Gyroscopes (2022-2030) ($MN)
  • Table 16 Global Inertial Measurement Unit Market Outlook, By Magnetometers (2022-2030) ($MN)
  • Table 17 Global Inertial Measurement Unit Market Outlook, By Technology (2022-2030) ($MN)
  • Table 18 Global Inertial Measurement Unit Market Outlook, By Micro-Electro-Mechanical Systems (MEMS) (2022-2030) ($MN)
  • Table 19 Global Inertial Measurement Unit Market Outlook, By Fiber Optic Gyro (FOG) (2022-2030) ($MN)
  • Table 20 Global Inertial Measurement Unit Market Outlook, By Ring Laser Gyro (RLG) (2022-2030) ($MN)
  • Table 21 Global Inertial Measurement Unit Market Outlook, By Mechanical Gyro (2022-2030) ($MN)
  • Table 22 Global Inertial Measurement Unit Market Outlook, By Other Technologies (2022-2030) ($MN)
  • Table 23 Global Inertial Measurement Unit Market Outlook, By Application (2022-2030) ($MN)
  • Table 24 Global Inertial Measurement Unit Market Outlook, By Aircraft (2022-2030) ($MN)
  • Table 25 Global Inertial Measurement Unit Market Outlook, By Passenger Vehicles (2022-2030) ($MN)
  • Table 26 Global Inertial Measurement Unit Market Outlook, By Robotics (2022-2030) ($MN)
  • Table 27 Global Inertial Measurement Unit Market Outlook, By Railway Systems (2022-2030) ($MN)
  • Table 28 Global Inertial Measurement Unit Market Outlook, By Smartphones (2022-2030) ($MN)
  • Table 29 Global Inertial Measurement Unit Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 30 Global Inertial Measurement Unit Market Outlook, By End User (2022-2030) ($MN)
  • Table 31 Global Inertial Measurement Unit Market Outlook, By Aerospace and Defense (2022-2030) ($MN)
  • Table 32 Global Inertial Measurement Unit Market Outlook, By Consumer Electronics (2022-2030) ($MN)
  • Table 33 Global Inertial Measurement Unit Market Outlook, By Automotive (2022-2030) ($MN)
  • Table 34 Global Inertial Measurement Unit Market Outlook, By Industrial (2022-2030) ($MN)
  • Table 35 Global Inertial Measurement Unit Market Outlook, By Other End Users (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!