PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1551295
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1551295
According to Stratistics MRC, the Global Carbon Capture and Storage Market is accounted for $3.7 billion in 2024 and is expected to reach $6.4 billion by 2030 growing at a CAGR of 9.3% during the forecast period. Carbon capture and storage (CCS) is a technological process designed to reduce carbon dioxide (CO2) emissions from industrial sources, such as power plants and manufacturing facilities. The process involves three key steps: capturing CO2 from emissions, transporting it to a storage site, and permanently storing it underground in geological formations. During capture, CO2 is separated from other gases produced in industrial activities. It is then compressed and transported, typically via pipelines, to locations such as depleted oil and gas reservoirs or saline aquifers, where it can be securely stored.
According to the U.S. Department of Energy, in the recent past, the U.S. government started providing loans up to 80% of the cost for nascent stage CCS projects.
Demand for enhanced oil recovery
The demand for enhanced oil recovery (EOR) within the market is increasing due to its dual benefits of maximizing oil extraction and reducing carbon emissions. EOR techniques, such as CO2 injection, leverage captured carbon dioxide to improve oil recovery rates from aging reservoirs while simultaneously sequestering CO2 underground. This synergy supports energy security and environmental sustainability, driving investments and technological advancements in CCS to address climate change and enhance oil production efficiency.
Concerns over process efficiency
Concerns over process efficiency in the market can significantly hinder progress and adoption. Inefficient CCS processes may lead to increased costs, lower capture rates, and reduced overall effectiveness in mitigating carbon emissions. These inefficiencies can result in higher operational expenses and decreased economic viability, discouraging investment and slowing the development of critical technologies. Ultimately, this undermines efforts to combat climate change and impedes the transition to a more sustainable energy system.
Growing focus on reducing CO2 emissions
The growing focus on reducing CO2 emissions is driving significant advancements in the market. As climate change concerns intensify, there is increased emphasis on technologies that capture and store carbon dioxide from industrial processes and power generation. This focus aims to mitigate greenhouse gas emissions, enhance environmental sustainability, and meet stringent regulatory targets. Investments in research and development are accelerating, leading to more efficient, scalable solutions that support global efforts to achieve net-zero emissions.
High implementation costs
High implementation costs in the market pose significant barriers to widespread adoption. These elevated expenses can deter investment and slow the deployment of CCS technologies, limiting their potential to effectively reduce carbon emissions. The financial burden associated with installing and maintaining CCS systems may also impact the economic feasibility of projects, particularly for smaller operators. Consequently, this can impede progress towards climate goals and delay the transition to more sustainable energy practices.
The market plays a crucial role in mitigating climate change by capturing and securely storing carbon dioxide emissions from industrial sources and power plants. This technology helps reduce greenhouse gas concentrations in the atmosphere, supporting global efforts to achieve climate targets and transition to a low-carbon economy. By enabling continued use of fossil fuels with reduced emissions, CCS also fosters energy security and promotes sustainable practices, driving technological innovation and economic opportunities in the process.
The carbon steel pipelines segment is expected to be the largest during the forecast period
The carbon steel pipelines is expected to be the largest during the forecast period. Their durability and strength make them suitable for handling high-pressure CO2, ensuring safe and efficient transport. However, the selection of carbon steel requires careful consideration of factors such as corrosion resistance and material integrity to prevent leaks and maintain system reliability. Effective management and maintenance of these pipelines are crucial for the successful implementation of CCS technologies.
The power generation segment is expected to have the highest CAGR during the forecast period
The power generation segment is expected to have the highest CAGR during the forecast period. Fossil fuel-based power plants, equipped with CCS systems, capture CO2 before it is released into the atmosphere, significantly lowering greenhouse gas emissions. This integration enhances the environmental performance of traditional power generation, supports regulatory compliance, and helps in the transition towards cleaner energy sources, thereby advancing global climate goals.
North America is projected to hold the largest market share during the forecast period driven by robust regulatory frameworks, significant investments, and technological advancements. The region benefits from abundant geological formations for CO2 storage and a strong focus on innovation in CCS technologies. This growth supports the transition to a low-carbon economy, enhances energy sustainability, and creates economic opportunities within the clean energy sector.
Asia Pacific is projected to hold the highest CAGR over the forecast period due to increasing environmental regulations and a push towards sustainable industrial practices. The region's geological formations, such as depleted oil and gas fields, provide suitable sites for CO2 storage. Government policies, international collaborations, and advancements in CCS technology are accelerating the deployment and integration of these solutions, supporting the transition to a low-carbon economy and enhancing energy sustainability in the region.
Key players in the market
Some of the key players in Carbon Capture and Storage market include SABIC, Shell, Carbfix hf., TotalEnergies, Chevron, Air Products and Chemicals, Inc., Carbon Clean Solutions, Mitsubishi Heavy Industries, Siemens Energy, Fluor Corporation, Linde plc, Tata Chemicals, BASF SE, Doosan Heavy Industries & Construction, Equinor, GE Carbon Capture and Technip Energies N.V.
In February 2024, Carbfix hf. announced an expansion of its global footprint by launching a new carbon capture plant in Iceland. This plant is expected to capture 3,000 tons of carbon annually.
In June 2023, Technip Energies N.V. announced the launch of CaptureNow, which is a platform that brings all the carbon capture, storage, and utilization technologies under one platform.
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.