Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1530751

Cover Image

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1530751

High Bandwidth Memory Market Forecasts to 2030 - Global Analysis By Product Type, Interface Type (HBM Stacked DRAM Interface, Open Compute Networking Interface and Other Interface Types), Memory Capacity, Application, End User and By Geography

PUBLISHED:
PAGES: 200+ Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
PDF (Single User License)
USD 4150
PDF (2-5 User License)
USD 5250
PDF & Excel (Site License)
USD 6350
PDF & Excel (Global Site License)
USD 7500

Add to Cart

According to Stratistics MRC, the Global High Bandwidth Memory (HBM) Market is accounted for $2.5 billion in 2024 and is expected to reach $9.2 billion by 2030 growing at a CAGR of 24.2% during the forecast period. High-bandwidth memory (HBM) is a type of computer memory that offers significantly faster data transfer rates compared to traditional DRAM. It achieves this by stacking multiple DRAM dies vertically and connecting them with through-silicon vias (TSVs). HBM is primarily used in high-performance computing applications, graphics cards, and AI accelerators where massive data throughput is crucial. Its ability to provide substantial bandwidth while consuming less power makes it ideal for demanding tasks in data centers, scientific simulations, and advanced gaming systems.

According to Micron Technology, their upcoming HBM3E memory will offer over 1.2 TB/s bandwidth and 30% lower power consumption compared to competing products. Micron plans to launch 24GB capacity HBM3E chips in Q2 2024 for use in Nvidia's H200 Tensor Core GPUs.

Market Dynamics:

Driver:

Growing need for high-performance computing

The growing need for high-performance computing (HPC) drives the High Bandwidth Memory (HBM) market by increasing demand for faster data processing and enhanced memory bandwidth. HBM's ability to deliver exceptional speed and efficiency is crucial for applications in artificial intelligence (AI), data centers, and advanced graphics. This demand is further fueled by the rise in big data analytics and complex simulations, pushing the adoption of HBM in various high-performance computing environments.

Restraint:

Limited production capacity

The complex manufacturing process, requiring advanced technology and precision, restricts the number of units that can be produced efficiently. This bottleneck affects the availability of HBM, leading to potential supply shortages and increased prices, which can hinder the widespread adoption of HBM solutions across different industries.

Opportunity:

Advancements in HBM technology

Advancements in HBM technology present significant opportunities for market growth. Innovations such as HBM2E and upcoming HBM3 offer higher bandwidth, improved energy efficiency, and greater storage capacity, meeting the rising demands of next-generation computing applications. These technological breakthroughs enable enhanced performance in AI, machine learning, and virtual reality, opening new market segments and driving the adoption of HBM in emerging high-performance applications.

Threat:

Competition from alternative technologies

Emerging solutions like High Bandwidth Cache (HBC), Hybrid Memory Cube (HMC), and advancements in traditional DRAM and GDDR technologies could potentially offer comparable performance at lower costs. As these alternatives evolve, they may capture market share in certain applications where the cost-performance trade-off favors them over HBM. Additionally, ongoing research into novel memory architectures and materials could lead to disruptive technologies that challenge HBM's position in high-performance computing applications, potentially limiting its long-term market growth and adoption rates.

Covid-19 Impact:

The COVID-19 pandemic initially disrupted HBM production due to supply chain issues and reduced manufacturing capacity. However, it also accelerated digital transformation efforts, increasing demand for high-performance computing solutions in sectors like healthcare, remote work, and e-commerce. This led to a surge in data center expansions and AI implementations, ultimately driving demand for HBM in the medium to long term.

The HBM2E segment is expected to be the largest during the forecast period

The HBM2E segment is expected to dominate the market due to its superior performance characteristics, offering higher bandwidth and improved power efficiency compared to previous generations. HBM2E addresses the growing demands of data-intensive applications in AI, machine learning, and high-performance computing. Its increased capacity and speed make it ideal for graphics processing units (GPUs) and data center accelerators. The segment's growth is further fueled by its adoption of cutting-edge technologies like 5G infrastructure, autonomous vehicles, and advanced analytics, positioning HBM2E as the go-to solution for high-bandwidth memory requirements in various industries.

The 16GB segment is expected to have the highest CAGR during the forecast period

The 16GB segment is experiencing the highest CAGR due to the increasing complexity of data-intensive applications requiring larger memory capacities. This capacity sweet spot balances performance needs with cost considerations for many high-end computing applications. The 16GB HBM modules are particularly attractive for AI training, scientific simulations, and advanced graphics rendering, where memory bandwidth and capacity are crucial. As more industries adopt AI and big data analytics, the demand for 16GB HBM solutions is expected to surge.

Region with largest share:

The North America region is positioned to dominate the High Bandwidth Memory (HBM) Market due to its strong presence in high-performance computing, artificial intelligence, and data center industries. The region hosts major technology companies and research institutions driving innovation in HBM applications. Substantial investments in AI, cloud computing, and advanced analytics further fuel demand for high-bandwidth memory solutions. North America's leadership in developing cutting-edge technologies and its early adoption of HBM in various sectors contribute to its dominant market position, setting trends for global HBM adoption and technological advancements.

Region with highest CAGR:

The Asia Pacific region anticipates the highest CAGR in the High Bandwidth Memory (HBM) market owing to rapid industrialization and increasing investments in technology infrastructure. The region's growing semiconductor industry, coupled with rising demand for high-performance computing in countries like China, Japan, and South Korea, fuels market growth. Expanding data centers and advancements in AI and VR applications further accelerate HBM adoption in the region.

Key players in the market

Some of the key players in High Bandwidth Memory (HBM) market include Samsung Electronics, SK Hynix, Micron Technology, AMD, NVIDIA, Intel, Xilinx, Fujitsu, IBM, Broadcom, MediaTek, Renesas Electronics, NXP Semiconductors, Texas Instruments, Cadence Design Systems, Arm Holdings, Marvell Technology Group, and InnoGrit Corporation.

Key Developments:

In February 2024, Samsung Electronics, a world leader in advanced memory technology announced that it has developed HBM3E 12H, the industry's first 12-stack HBM3E DRAM and the highest-capacity HBM product to date. Samsung's HBM3E 12H provides an all-time high bandwidth of up to 1,280 gigabytes per second (GB/s) and an industry-leading capacity of 36 gigabytes (GB). In comparison to the 8-stack HBM3 8H, both aspects have improved by more than 50%.

In December 2023, Nvidia has paid hundreds of millions of dollars in advance to SK Hynix and Micron to ensure a stable supply of High Bandwidth Memory (HBM). Recently, Samsung Electronics completed product testing and signed an HBM product supply contract with Nvidia. According to industry sources cited by Chosun Biz, SK Hynix, and Micron each received between KRW700 billion and KRW1 trillion (approximately US$540 million to US$770 million) in advance payments from Nvidia for the supply of advanced memory products. Although the details are not disclosed, the industry believes this is a measure by Nvidia to secure the supply of HBM3e for its new GPU products in 2024.

In November 2023, Nvidia announced the H200 and GH200 product line at Supercomputing 23 this morning. These are the most powerful chips Nvidia has ever created, building on the existing Hopper H100 architecture but adding more memory and more compute. These are set to power the future generation of AI supercomputers, with over 200 exaflops of AI compute set to come online during 2024.

Product Types Covered:

  • HBM1
  • HBM2
  • HBM2E
  • HBM3
  • Other Product Types

Interface Types Covered:

  • HBM Stacked DRAM Interface (HBI)
  • Open Compute Networking (OCN) Interface
  • Other Interface Types

Memory Capacities Covered:

  • 2GB
  • 4GB
  • 8GB
  • 16GB
  • Other Memory Capacities

Applications Covered:

  • Graphics Processing Unit (GPU)
  • Application-Specific Integrated Circuit (ASIC)
  • Central Processing Unit (CPU)
  • Accelerated Processing Unit (APU)
  • Other Applications

End Users Covered:

  • High-Performance Computing (HPC)
  • Artificial Intelligence (AI)
  • Networking Equipment
  • Telecommunications
  • Graphics Rendering and Gaming
  • Data Centers
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances
Product Code: SMRC26863

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global High Bandwidth Memory (HBM) Market, By Product Type

  • 5.1 Introduction
  • 5.2 HBM1
  • 5.3 HBM2
  • 5.4 HBM2E
  • 5.5 HBM3
  • 5.6 Other Product Types

6 Global High Bandwidth Memory (HBM) Market, By Interface Type

  • 6.1 Introduction
  • 6.2 HBM Stacked DRAM Interface (HBI)
  • 6.3 Open Compute Networking (OCN) Interface
  • 6.4 Other Interface Types

7 Global High Bandwidth Memory (HBM) Market, By Memory Capacity

  • 7.1 Introduction
  • 7.2 2GB
  • 7.3 4GB
  • 7.4 8GB
  • 7.5 16GB
  • 7.6 Other Memory Capacities

8 Global High Bandwidth Memory (HBM) Market, By Application

  • 8.1 Introduction
  • 8.2 Graphics Processing Unit (GPU)
  • 8.3 Application-Specific Integrated Circuit (ASIC)
  • 8.4 Central Processing Unit (CPU)
  • 8.5 Accelerated Processing Unit (APU)
  • 8.6 Other Applications

9 Global High Bandwidth Memory (HBM) Market, By End User

  • 9.1 Introduction
  • 9.2 High-Performance Computing (HPC)
  • 9.3 Artificial Intelligence (AI)
  • 9.4 Networking Equipment
  • 9.5 Telecommunications
  • 9.6 Graphics Rendering and Gaming
  • 9.7 Data Centers
  • 9.8 Other End Users

10 Global High Bandwidth Memory (HBM) Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Samsung Electronics Co., Ltd.
  • 12.2 SK Hynix Inc.
  • 12.3 Micron Technology, Inc.
  • 12.4 Advanced Micro Devices, Inc. (AMD)
  • 12.5 NVIDIA Corporation
  • 12.6 Intel Corporation
  • 12.7 Xilinx, Inc.
  • 12.8 Fujitsu Limited
  • 12.9 IBM Corporation
  • 12.10 Broadcom Inc.
  • 12.11 MediaTek Inc.
  • 12.12 Renesas Electronics Corporation
  • 12.13 NXP Semiconductors N.V.
  • 12.14 Texas Instruments Incorporated
  • 12.15 Cadence Design Systems, Inc.
  • 12.16 Arm Holdings plc
  • 12.17 Marvell Technology Group Ltd.
  • 12.18 InnoGrit Corporation
Product Code: SMRC26863

List of Tables

  • Table 1 Global High Bandwidth Memory (HBM) Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global High Bandwidth Memory (HBM) Market Outlook, By Component (2022-2030) ($MN)
  • Table 3 Global High Bandwidth Memory (HBM) Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 4 Global High Bandwidth Memory (HBM) Market Outlook, By Base Stations (2022-2030) ($MN)
  • Table 5 Global High Bandwidth Memory (HBM) Market Outlook, By Antennas (2022-2030) ($MN)
  • Table 6 Global High Bandwidth Memory (HBM) Market Outlook, By Routers (2022-2030) ($MN)
  • Table 7 Global High Bandwidth Memory (HBM) Market Outlook, By Switches (2022-2030) ($MN)
  • Table 8 Global High Bandwidth Memory (HBM) Market Outlook, By Other Hardware (2022-2030) ($MN)
  • Table 9 Global High Bandwidth Memory (HBM) Market Outlook, By Software (2022-2030) ($MN)
  • Table 10 Global High Bandwidth Memory (HBM) Market Outlook, By Network Management Software (2022-2030) ($MN)
  • Table 11 Global High Bandwidth Memory (HBM) Market Outlook, By Security Solutions (2022-2030) ($MN)
  • Table 12 Global High Bandwidth Memory (HBM) Market Outlook, By Other Software (2022-2030) ($MN)
  • Table 13 Global High Bandwidth Memory (HBM) Market Outlook, By Deployment Type (2022-2030) ($MN)
  • Table 14 Global High Bandwidth Memory (HBM) Market Outlook, By On-premises (2022-2030) ($MN)
  • Table 15 Global High Bandwidth Memory (HBM) Market Outlook, By Cloud-based (2022-2030) ($MN)
  • Table 16 Global High Bandwidth Memory (HBM) Market Outlook, By Organization Size (2022-2030) ($MN)
  • Table 17 Global High Bandwidth Memory (HBM) Market Outlook, By Small and Medium-sized Enterprises (SMEs) (2022-2030) ($MN)
  • Table 18 Global High Bandwidth Memory (HBM) Market Outlook, By Large Enterprises (2022-2030) ($MN)
  • Table 19 Global High Bandwidth Memory (HBM) Market Outlook, By Technology (2022-2030) ($MN)
  • Table 20 Global High Bandwidth Memory (HBM) Market Outlook, By LTE (2022-2030) ($MN)
  • Table 21 Global High Bandwidth Memory (HBM) Market Outlook, By 5G (2022-2030) ($MN)
  • Table 22 Global High Bandwidth Memory (HBM) Market Outlook, By Wi-Fi (2022-2030) ($MN)
  • Table 23 Global High Bandwidth Memory (HBM) Market Outlook, By Other Technologies (2022-2030) ($MN)
  • Table 24 Global High Bandwidth Memory (HBM) Market Outlook, By Application (2022-2030) ($MN)
  • Table 25 Global High Bandwidth Memory (HBM) Market Outlook, By Manufacturing (2022-2030) ($MN)
  • Table 26 Global High Bandwidth Memory (HBM) Market Outlook, By Healthcare (2022-2030) ($MN)
  • Table 27 Global High Bandwidth Memory (HBM) Market Outlook, By Transportation and Logistics (2022-2030) ($MN)
  • Table 28 Global High Bandwidth Memory (HBM) Market Outlook, By Energy and Utilities (2022-2030) ($MN)
  • Table 29 Global High Bandwidth Memory (HBM) Market Outlook, By Emergency Services (2022-2030) ($MN)
  • Table 30 Global High Bandwidth Memory (HBM) Market Outlook, By Other Applications (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!