PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1530706
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1530706
According to Stratistics MRC, the Global Power Semiconductor Market is accounted for $76.25 billion in 2024 and is expected to reach $124.41 billion by 2030 growing at a CAGR of 8.5% during the forecast period. Power semiconductors are electronic devices designed to handle large electrical currents and voltages efficiently. Unlike small-signal semiconductors used in low-power applications, power semiconductors are optimized for high voltage and current ratings, often capable of switching or regulating substantial amounts of electrical power. Each type has specific characteristics suited for different power management needs, balancing factors like switching speed, voltage blocking capability, and efficiency.
According to Shopify, income from smartphone sales peaked at USD 481 billion in 2021 and is predicted to surpass USD 500 billion by 2026. According to China's Development Plan for the New Energy Automobile Industry (2021-2035), EVs could include a 25% market share by 2025.
Rise in demand for power electronics
The increasing demand for power electronics is substantially boosting the power semiconductor market. Power electronics play a crucial role in converting and managing electrical power in various applications, including renewable energy systems, electric vehicles, industrial equipment and consumer electronics. The global shift towards sustainable energy sources such as solar and wind power requires efficient power conversion technologies, where power semiconductors are integral. Additionally, the proliferation of electric vehicles necessitates advanced power semiconductor solutions for efficient energy management and motor control.
High initial investment costs
The power semiconductor industry faces significant barriers due to high initial investment costs, which impede innovation and market entry. These costs primarily stem from the complex and capital-intensive nature of semiconductor manufacturing processes, including research and development, fabrication facilities (fabs), and equipment. Building and maintaining cutting-edge fabs require substantial financial resources, often in the billions of dollars, making it difficult for new players or smaller companies to compete with established giants in the industry. However, these financial barriers create a high threshold for entry into the market and inhibit smaller firms from scaling up operations or investing in research for next-generation semiconductor technologies.
Increasing demand for energy efficiency
The increasing demand for energy efficiency has propelled the growth of power semiconductors. These semiconductors play a crucial role in improving the efficiency of power conversion and management systems, thereby reducing energy consumption and operational costs. Key drivers include the rapid adoption of electric vehicles, the expansion of renewable energy infrastructure, and the proliferation of smart grid technologies. Power semiconductors enable higher efficiency in converting and controlling electrical power, minimizing energy losses during transmission and utilization. As global initiatives prioritize sustainability and carbon footprint reduction, the demand for advanced power semiconductor technologies is expected to continue growing.
Integration and compatibility issues
Integration and compatibility issues in power semiconductors refer to challenges arising from the need to combine different semiconductor technologies or materials on a single chip or within a single system. Power semiconductor devices, such as MOSFETs and IGBTs, are crucial for efficient power conversion and control in various applications from renewable energy systems to electric vehicles. However, integrating these devices poses significant technical hurdles. Compatibility issues arise due to differences in electrical characteristics, thermal properties, and manufacturing processes between different semiconductor materials and technologies.
The COVID-19 pandemic significantly impacted the power semiconductor industry. Initially, disruptions in the global supply chain caused delays in manufacturing and distribution of semiconductors, leading to shortages and price fluctuations. This was exacerbated by factory shutdowns and reduced production capacities as manufacturers struggled with labor shortages and logistical challenges. Companies in the power semiconductor sector had to adapt by accelerating digital transformation efforts, implementing remote work policies, and diversifying supply chain sources to mitigate future risks.
The Power Integrated Circuits segment is expected to be the largest during the forecast period
Power Integrated Circuits segment is expected to be the largest during the forecast period by combining multiple functionalities onto a single chip to enhance efficiency and performance in various applications. Unlike discrete power components, such as diodes and transistors, Power ICs integrate control, drive, and protection circuitry with power switching devices like MOSFETs or IGBTs. Power ICs also facilitate better thermal management and higher reliability due to optimized circuit design and reduced interconnects. As the demand for energy-efficient and compact electronic devices grows, Power ICs play a crucial role in enabling smaller form factors, improved energy efficiency, and enhanced performance across a wide range of electronic products and systems.
The Silicon Carbide (SiC) segment is expected to have the highest CAGR during the forecast period
Silicon Carbide (SiC) segment is expected to have the highest CAGR during the forecast period due to its superior material properties compared to traditional silicon. SiC devices offer higher breakdown electric field strength, enabling them to operate at higher voltages and temperatures while maintaining efficiency. This characteristic results in reduced conduction losses, allowing for smaller, more efficient power electronic systems. Additionally, SiC's higher thermal conductivity enhances heat dissipation, further improving reliability and performance under high-power operation. As manufacturers continue to refine production processes and reduce costs, the widespread adoption of SiC semiconductors is expected to accelerate, driving innovation in power electronics and contributing to the transition towards more energy-efficient technologies.
Asia Pacific region commanded the largest market share over the extrapolated period. As cities expand and modernize, there is a burgeoning need for efficient power management solutions in various applications such as smart grids, electric vehicles, and industrial automation. Power semiconductors play a crucial role in enhancing energy efficiency, reducing carbon footprints, and ensuring reliable power delivery amidst increasing urban energy demands throughout the region. Moreover, the integration of advanced technologies like Internet of Things (IoT) and artificial intelligence (AI) in urban infrastructure further amplifies the requirement for robust semiconductor devices capable of handling complex data processing and real-time decision-making across the region.
During the projected time frame, Europe region is estimated to witness lucrative growth. Stricter environmental standards and ambitious climate goals have pushed governments to incentivize and mandate the regional adoption of energy-efficient technologies, including power semiconductors. These regulations drive innovation and investment in the development of more efficient and sustainable semiconductor solutions. Moreover, financial support and research grants provided by governments encourage collaboration between industry players and research institutions, fostering a robust ecosystem for technological advancement across the region.
Key players in the market
Some of the key players in Power Semiconductor market include Analog Devices, Inc, Fairchild Semiconductor International, Inc, Fuji Electric Co., Ltd, Infineon Technologies AG, Magnachip Semiconductor Corporation, Mitsubishi Electric Corporation, NXP Semiconductors N.V., Renesas Electronics Corporation, Semikron International GmbH, Silicon Laboratories Inc, STMicroelectronics N.V. and Toshiba Corporation.
In October 2023, Kia Corporation and Hyundai Motor Company announced a deliberate collaboration with Infineon Technologies AG, a universal semiconductor lead, in order to secure power semiconductors in support of the rising electric vehicle demand across the globe. As per the deal, Kia and Hyundai will buy core power semiconductors for automobiles, such as insulated-gate bipolar transistor (IGBT), diode, and silicon carbide (SiC) power modules.
In June 2023, Mitsubishi Electric Corporation announced that the company would begin shipping samples of its new NX-type full-SiC (silicon carbide) power semiconductor module for industrial equipment.
In May 2023, Toshiba Electronics Europe launched a new 150V N-channel power MOSFET based upon their latest generation U-MOS X-H Trench process. The TPH9R00CQ5 is specifically designed for high-performance switching power supplies such as those used in communication base stations and other industrial applications.