Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1511368

Cover Image

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1511368

Network Slicing Market Forecasts to 2030 - Global Analysis By Component (Standard, Step and Other Types), Application (Telecom operators, Network Function Virtualization and Other Applications), End User and By Geography

PUBLISHED:
PAGES: 200+ Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
PDF (Single User License)
USD 4150
PDF (2-5 User License)
USD 5250
PDF & Excel (Site License)
USD 6350
PDF & Excel (Global Site License)
USD 7500

Add to Cart

According to Stratistics MRC, the Global Network Slicing Market is accounted for $1.12 billion in 2024 and is expected to reach $11.8 billion by 2030 growing at a CAGR of 48.0% during the forecast period. Network slicing is a concept in telecommunications that allows a single physical network to be partitioned into multiple virtual networks, known as slices. Each slice is customized to meet specific requirements such as bandwidth, latency, security, and reliability, tailored for different applications or services. This technology enables efficient sharing of network resources while providing isolated and dedicated virtual networks that operate independently. Network slicing is crucial for emerging technologies like 5G, where diverse use cases-from autonomous vehicles to smart cities-require distinct network characteristics to function optimally.

According to GSMA, network slicing, in combination with other enablers and capabilities, will aid operators in addressing a revenue opportunity worth USD 300 billion by 2025. According to an ETNO-European Telecommunications Network Operators' Association survey, the number of IoT healthcare active connections was expected to increase through the years. It was at 0.87 million connections in 2016 and is expected to reach 10.34 million by 2025.

Market Dynamics:

Driver:

IoT and M2M communication

In network slicing market, Internet of Things and machine-to-machine communication play crucial roles as the drivers of demand and innovation. IoT devices, ranging from sensors to smart appliances, require specific network characteristics such as low latency, high reliability, and scalable connectivity, which network slicing can efficiently provide by creating virtual networks tailored to these needs. M2M communication, which involves automated data exchange between devices without human intervention, benefits from network slicing by ensuring dedicated resources and optimized performance for various applications like industrial automation and smart cities.

Restraint:

Resource management

A key restraint in this domain is the challenge of effectively managing and balancing the allocation of resources such as bandwidth, computing power, and network capacity among multiple slices simultaneously. This becomes increasingly complex as diverse slices with varying quality of service (QoS) requirements coexist on the same physical network infrastructure. Issues such as ensuring fair allocation, preventing resource contention, and dynamically adjusting resource allocation based on real-time demand are critical to maintaining the performance and reliability of network slices.

Opportunity:

Virtualization and cloud services

Virtualization and cloud services present significant opportunities in the network slicing market by enabling efficient and flexible deployment of network resources. Virtualization allows networks to be abstracted from physical infrastructure, facilitating the creation of multiple virtual networks (slices) on a single physical network. Cloud services complement virtualization by providing scalable computing and storage resources on-demand, which are essential for supporting dynamic network slicing requirements. Together, virtualization and cloud services empower telecommunications providers to offer customized and optimized network slices tailored to specific user needs, such as low latency for IoT applications or high bandwidth for video streaming.

Threat:

Cost and ROI uncertainty

In network slicing market, cost and ROI uncertainty pose a significant threat due to several factors. The upfront investment required for implementing network slicing infrastructure can be substantial, with costs varying based on the complexity and scale of deployment. Uncertainty arises from the difficulty in accurately predicting these initial costs and ensuring they align with expected returns. Return on investment (ROI) in network slicing is influenced by factors such as market demand, technological advancements, and regulatory changes, all of which can fluctuate over time. This volatility makes it challenging for stakeholders to forecast and achieve expected profitability within projected timelines.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the network slicing market in several ways. It accelerated the demand for robust and flexible network infrastructures to support increased remote working, e-learning, and telemedicine needs, driving investment in slicing technologies. It highlighted the importance of resilient networks capable of dynamically allocating resources based on varying demands, thereby boosting the adoption of network slicing as a key technology. Lastly, it underscored the necessity for reliable and low-latency networks to ensure seamless connectivity amid surges in online activities, further stimulating the growth of the network slicing market worldwide.

The telecom operators segment is expected to be the largest during the forecast period

Telecom operators are experiencing significant growth in the network slicing market due to several factors. Network slicing allows operators to create multiple virtual networks over a common physical infrastructure, tailored to specific customer needs. This flexibility enables operators to offer differentiated services such as enhanced mobile broadband, ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). By leveraging network slicing, operators can efficiently allocate resources, improve service quality, and meet diverse customer demands in sectors like manufacturing, healthcare, and smart cities.

The automotive segment is expected to have the highest CAGR during the forecast period

The automotive segment is experiencing significant growth in the network slicing market due to the increasing integration of advanced connectivity and autonomous technologies in vehicles. Network slicing allows automotive manufacturers and service providers to create dedicated virtual networks tailored to specific automotive applications, such as autonomous driving, vehicle-to-everything (V2X) communication, and in-car entertainment systems. As automotive networks become more complex and demand for high-bandwidth, low-latency services grows, network slicing offers a scalable solution to efficiently manage and optimize network resources, driving innovation and adoption in the automotive sector.

Region with largest share:

The North American region has experienced significant growth in the network slicing market due to several key factors. The region's advanced telecommunications infrastructure and widespread adoption of 5G technology have created fertile ground for implementing network slicing, which allows operators to customize and optimize network resources for various applications. Also, there is a strong demand for enhanced mobile broadband services, IoT connectivity, and low-latency applications such as autonomous vehicles and industrial automation, all of which benefit greatly from network slicing capabilities.

Region with highest CAGR:

The Asia-Pacific region has seen significant growth in the network slicing market due to several factors. As telecommunications infrastructure continues to expand rapidly across countries like China, India, Japan, and South Korea, there is a growing demand for efficient network management and customization. Network slicing offers operators the ability to allocate network resources dynamically based on specific application requirements, enhancing overall network efficiency and the user experience. With the advent of 5G technology, which heavily relies on network slicing to support diverse services such as IoT, autonomous vehicles, and enhanced mobile broadband, the region has witnessed increased investments and deployments in this technology.

Key players in the market

Some of the key players in Network Slicing market include Affirmed Networks Inc., Amdocs, Inc., Argela Technologies, Aria Networks Ltd, BT Group PLC, Cisco Systems Inc., Ericsson Inc., Huawei Technologies Co. Ltd, Intel Corporation, Mavenir Inc., NEC Corporation, Nokia Corporation, NTT DOCOMO Inc., Samsung, VMware, Inc. and ZTE Corporation.

Key Developments:

In June 2024, Cisco said that it would set up a cybersecurity center in Taiwan and work with the government to train more people to work in the sector. Democratically governed Taiwan, which Beijing views as its own territory, has repeatedly complained of cyberattacks coming from China, targeting government officials and departments as well.

In June 2024, Samsung Electronics unveiled the industry's first hybrid refrigerator using semiconductor elements and artificial intelligence (AI) to improve energy efficiency and performance. The new Bespoke AI Hybrid Refrigerator adopts a hybrid cooling method that combines Peltier modules, along with a traditional compressor, reports Yonhap news agency.

Components Covered:

  • Services
  • Solutions
  • Other Components

Applications Covered:

  • Telecom operators
  • Network Function Virtualization
  • Real-Time Surveillance
  • Enterprises
  • Other Applications

End Users Covered:

  • Transportation and Logistics
  • Healthcare
  • Media and Entertainment
  • Government
  • Energy and Utilities
  • Manufacturing
  • Automotive
  • Banking Finance Services and Insurance (BFSI)
  • Retail
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances
Product Code: SMRC26756

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Network Slicing Market, By Component

  • 5.1 Introduction
  • 5.2 Services
    • 5.2.1 Managed Services
    • 5.2.2 Professional services
      • 5.2.2.1 Integration and Deployment
      • 5.2.2.2 Support and Maintenance
      • 5.2.2.3 Network design and planning
      • 5.2.2.4 Other Professional services
    • 5.2.3 Other Services
  • 5.3 Solutions
  • 5.4 Other Components

6 Global Network Slicing Market, By Application

  • 6.1 Introduction
  • 6.2 Telecom operators
  • 6.3 Network Function Virtualization
  • 6.4 Real-Time Surveillance
  • 6.5 Enterprises
  • 6.6 Other Applications

7 Global Network Slicing Market, By End User

  • 7.1 Introduction
  • 7.2 Transportation and Logistics
  • 7.3 Healthcare
  • 7.4 Media and Entertainment
  • 7.5 Government
  • 7.6 Energy and Utilities
  • 7.7 Manufacturing
  • 7.8 Automotive
  • 7.9 Banking Finance Services and Insurance (BFSI)
  • 7.10 Retail
  • 7.11 Other End Users

8 Global Network Slicing Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Affirmed Networks Inc.
  • 10.2 Amdocs, Inc.
  • 10.3 Argela Technologies
  • 10.4 Aria Networks Ltd
  • 10.5 BT Group PLC
  • 10.6 Cisco Systems Inc.
  • 10.7 Ericsson Inc.
  • 10.8 Huawei Technologies Co. Ltd
  • 10.9 Intel Corporation
  • 10.10 Mavenir Inc.
  • 10.11 NEC Corporation
  • 10.12 Nokia Corporation
  • 10.13 NTT DOCOMO Inc.
  • 10.14 Samsung
  • 10.15 VMware, Inc.
  • 10.16 ZTE Corporation
Product Code: SMRC26756

List of Tables

  • Table 1 Global Network Slicing Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Network Slicing Market Outlook, By Component (2022-2030) ($MN)
  • Table 3 Global Network Slicing Market Outlook, By Services (2022-2030) ($MN)
  • Table 4 Global Network Slicing Market Outlook, By Managed Services (2022-2030) ($MN)
  • Table 5 Global Network Slicing Market Outlook, By Professional services (2022-2030) ($MN)
  • Table 6 Global Network Slicing Market Outlook, By Integration and Deployment (2022-2030) ($MN)
  • Table 7 Global Network Slicing Market Outlook, By Support and Maintenance (2022-2030) ($MN)
  • Table 8 Global Network Slicing Market Outlook, By Network design and planning (2022-2030) ($MN)
  • Table 9 Global Network Slicing Market Outlook, By Other Professional services (2022-2030) ($MN)
  • Table 10 Global Network Slicing Market Outlook, By Other Services (2022-2030) ($MN)
  • Table 11 Global Network Slicing Market Outlook, By Solutions (2022-2030) ($MN)
  • Table 12 Global Network Slicing Market Outlook, By Other Components (2022-2030) ($MN)
  • Table 13 Global Network Slicing Market Outlook, By Application (2022-2030) ($MN)
  • Table 14 Global Network Slicing Market Outlook, By Telecom operators (2022-2030) ($MN)
  • Table 15 Global Network Slicing Market Outlook, By Network Function Virtualization (2022-2030) ($MN)
  • Table 16 Global Network Slicing Market Outlook, By Real-Time Surveillance (2022-2030) ($MN)
  • Table 17 Global Network Slicing Market Outlook, By Enterprises (2022-2030) ($MN)
  • Table 18 Global Network Slicing Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 19 Global Network Slicing Market Outlook, By End User (2022-2030) ($MN)
  • Table 20 Global Network Slicing Market Outlook, By Transportation and Logistics (2022-2030) ($MN)
  • Table 21 Global Network Slicing Market Outlook, By Healthcare (2022-2030) ($MN)
  • Table 22 Global Network Slicing Market Outlook, By Media and Entertainment (2022-2030) ($MN)
  • Table 23 Global Network Slicing Market Outlook, By Government (2022-2030) ($MN)
  • Table 24 Global Network Slicing Market Outlook, By Energy and Utilities (2022-2030) ($MN)
  • Table 25 Global Network Slicing Market Outlook, By Manufacturing (2022-2030) ($MN)
  • Table 26 Global Network Slicing Market Outlook, By Automotive (2022-2030) ($MN)
  • Table 27 Global Network Slicing Market Outlook, By Banking Finance Services and Insurance (BFSI) (2022-2030) ($MN)
  • Table 28 Global Network Slicing Market Outlook, By Retail (2022-2030) ($MN)
  • Table 29 Global Network Slicing Market Outlook, By Other End Users (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!