PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1511356
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1511356
According to Stratistics MRC, the Global Infrared Thermography Market is accounted for $462.25 million in 2023 and is expected to reach $713.39 million by 2030 growing at a CAGR of 7.5% during the forecast period. Infrared Thermography (IRT), also known as thermal imaging or infrared imaging, is a non-contact technology used to visualize heat patterns on the surface of objects. It detects infrared radiation (heat) and converts it into an image or video, highlighting temperature differences. Widely utilized across industries, IRT can detect anomalies in electrical systems, monitor building insulation, assist in medical diagnostics, and support preventive maintenance by identifying heat-related issues before they lead to failures.
According to World Bank collection of development indicator, the industrial sector including construction sector, of Czechia contributed 31.49 % in 2020 in the country's GDP. According to a survey conducted by NATO, in 2021, the United States is estimated to spend 3.52%of its gross domestic product on defense expenditures.
Rising adoption in predictive maintenance
The adoption of predictive maintenance is significantly boosting the growth of the infrared thermography market. Infrared thermography enables early detection of anomalies in equipment by capturing thermal images, which helps in identifying potential issues before they lead to failures. This proactive approach reduces unplanned downtime and maintenance costs, making it an attractive solution for industries such as manufacturing, utilities, and transportation. As industries increasingly prioritize operational efficiency and cost reduction, the demand for infrared thermography in predictive maintenance applications is accelerating, contributing to its market expansion.
Skill and training requirements
In the infrared thermography (IRT) market, skill and training requirements act as a restraint due to the specialized knowledge and competencies needed to operate and interpret thermal imaging equipment effectively. Proficiency in IRT demands an understanding of heat transfer principles, calibration techniques, and familiarity with various infrared camera systems. Technicians must also be trained to analyze thermal images accurately to diagnose issues. This high barrier to entry limits the pool of qualified professionals, thus potentially restricting market growth as companies face challenges in finding skilled personnel and investing in ongoing training programs.
Advanced analytics and AI integration
The integration of advanced analytics and AI in the infrared thermography market presents significant opportunities for enhancing predictive maintenance, quality control, and safety. AI algorithms can analyze thermal images to detect anomalies and predict equipment failures with high accuracy, reducing downtime and maintenance costs. Advanced analytics facilitate real-time monitoring and diagnostics, enabling swift responses to thermal anomalies in industrial and infrastructure applications. These technologies also improve the interpretation of complex thermal patterns, allowing for automated, precise defect identification in manufacturing processes, building inspections, and energy audits.
Environmental and operational limitations
Environmental and operational limitations refer to the challenges affecting the accuracy and usability of infrared imaging due to external and situational factors. These limitations include extreme temperatures, varying humidity, and environmental interferences like dust or smoke, which can distort thermal readings. Additionally, the need for precise calibration and specific viewing angles complicates operation, especially in dynamic or harsh environments. These factors can impair the functionality of IRT equipment, leading to potential misinterpretations and reducing reliability in field applications.
The COVID-19 pandemic significantly boosted the infrared thermography (IRT) market. As temperature screening became a key measure to detect and prevent the spread of the virus, demand for infrared thermographic cameras and systems surged. These devices were rapidly deployed in public places, workplaces, airports, and healthcare facilities for fever detection. Consequently, the market saw accelerated innovation and the integration of advanced features like AI for enhanced accuracy. This increased adoption of IRT technology for health monitoring has also expanded its applications beyond traditional uses.
The cameras segment is expected to be the largest during the forecast period
The camera segment in the infrared thermography market has been experiencing notable growth due to advancements in technology and increasing applications across various industries. These cameras are crucial for detecting and measuring thermal radiation emitted by objects, enabling non-contact temperature measurement and thermal imaging for predictive maintenance, building diagnostics, and industrial inspections. The demand is driven by the need for accurate temperature monitoring, energy efficiency improvements, and preventive maintenance practices. Moreover, the integration of infrared cameras with IoT and AI technologies further enhances their capabilities, propelling market growth.
The structural analysis segment is expected to have the highest CAGR during the forecast period
The structural analysis segment within the infrared thermography market has experienced notable growth due to advancements in technology and increased awareness of its applications. This segment focuses on using infrared thermography to detect structural defects, assess building integrity, and identify potential safety hazards in infrastructure. As industries and governments prioritize preventive maintenance and safety measures, demand for infrared thermography in structural analysis has surged. The adoption of high-resolution thermal cameras and sophisticated software solutions has further fuelled this growth, allowing for more accurate and comprehensive inspections across various sectors such as construction, aerospace, and utilities.
The North American region has seen significant growth in the infrared thermography market due to increasing adoption across various industries such as building diagnostics, automotive, aerospace, and healthcare. Factors driving this growth include stringent regulations emphasizing energy efficiency and safety, alongside technological advancements improving the affordability and performance of infrared cameras. Moreover, rising awareness about preventive maintenance and the benefits of non-destructive testing methods has bolstered market demand. North America's strong presence of key market players and robust research and development activities further contribute to the region's expansion in the infrared thermography market.
The Asia-Pacific region has experienced significant growth in the infrared thermography market due to several factors. Increasing industrialization across countries like China, India, and South Korea has spurred demand for non-destructive testing techniques, including thermography, to ensure operational efficiency and safety in manufacturing processes. The rising adoption of infrared cameras in sectors such as building diagnostics, healthcare, and automotive for predictive maintenance and energy audits has further fuelled market expansion.
Key players in the market
Some of the key players in Infrared Thermography market include Allied Vision Technologies GmbH, Amprobe Test Tools, Axis Communications AB, Dahua Technology, Fluke Corporation, Hikvision, Infrared Cameras Inc., Jenoptik AG, Micro-Epsilon, NEC Corporation, OPGAL Optronics Industries Ltd., Photonis Technologies SAS, Raytheon Technologies Corporation, Seek Thermal, SKF, Teledyne FLIR LLC, Testo SE & Co. KGaA and Zhejiang Dali Technology Co.,Ltd.
In June 2024, Jenoptik secured a new order from the Traffic Department of Kuwait, a division of the country's Ministry of the Interior. Together with its local partner First Joint Group, Jenoptik will equip Kuwait with more than 100 traffic enforcement systems to increase safety at intersections in the country. The systems are able to detect red light, speeding and moving vehicle offenses, such as illegal turns.
In June 2024, Raytheon, an RTX business, was awarded a $506 million contract from NASA to design and build the Landsat Next Instrument Suite (LandIS), which includes three next generation space instruments, with an option for an additional instrument. The instrument suite will perform Earth observation from three identical observatories from Low-Earth orbit. Through multispectral imaging technology, LandIS will collect images of the Earth's surface every six days, detecting natural and human-induced changes.
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.