Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1511294

Cover Image

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1511294

Negative Photoresist Chemicals Market Forecasts to 2030 - Global Analysis By Type, Chemical, Application and by Geography

PUBLISHED:
PAGES: 200+ Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
PDF (Single User License)
USD 4150
PDF (2-5 User License)
USD 5250
PDF & Excel (Site License)
USD 6350
PDF & Excel (Global Site License)
USD 7500

Add to Cart

According to Stratistics MRC, the Global Negative Photoresist Chemicals Market is accounted for $2327.24 million in 2024 and is expected to reach $3414.95 million by 2030 growing at a CAGR of 6.60% during the forecast period. Chemicals known as negative photoresist are essential to photolithography procedures, especially in microfabrication and semiconductor manufacturing processes. Negative photoresists are suited for producing features with high aspect ratios because, in contrast to their positive counterparts, they become more resistant to chemical etching when exposed to light. These substances usually include crosslinking agents, photoactive substances, and polymers.

According to the American Medical Association, regular physical activity is essential for maintaining good health and reducing the risk of chronic diseases such as obesity, diabetes, and cardiovascular conditions.

Market Dynamics:

Driver:

Increasing need in the semiconductor sector

The semiconductor industry is driving the demand for negative photoresist chemicals by relentlessly pursuing smaller, more powerful electronic devices. Advanced lithography processes become essential as manufacturers work to meet the demands of emerging technologies like artificial intelligence and 5G while also adhering to Moore's Law. Additionally, the growth of semiconductor fabrication facilities, especially in Asia-Pacific, emphasizes how important negative photoresist chemicals are to enabling high-resolution patterning, which is necessary for advanced integrated circuits.

Restraint:

Growing intricacy of lithography procedures

The market for negative photoresist chemicals faces a major challenge due to the increasing complexity of lithography processes. There is an increasing need for highly specialized negative photoresist formulations that are suited to particular applications as semiconductor technology develops. Because of this complexity, it is more difficult for new players to enter the market, which requires ongoing innovation and R&D spending in order to remain competitive. Manufacturers need to stay up-to-date with the latest lithography techniques, which include EUV lithography and multi-patterning.

Opportunity:

Development of facilities for manufacturing semiconductors

The growth of semiconductor manufacturing plants, especially in North America and Asia-Pacific, opens doors for suppliers of chemicals used in negative photoresist. The need for advanced lithography solutions is driven by rising investments in foundries and fabs to meet the rising demand for semiconductors in industrial, automotive, and consumer electronics applications. Moreover, the need for high-performance negative photoresist chemicals will increase in tandem with semiconductor manufacturers' adoption of advanced process nodes and increased production capacity.

Threat:

Strong rivalry and pricing pressure

There is fierce competition among suppliers in the market for negative photoresist chemicals, which drives down prices and erodes margins. Many players, including niche manufacturers and multinational corporations, compete for market share as the industry develops by providing cutting-edge product solutions and competitive pricing. Prices are under pressure to decline in this highly competitive market, which reduces suppliers' profit margins. Additionally, the commoditization of common photoresist formulations also intensifies price competition, making it difficult for businesses to set themselves apart from the competition purely on the basis of price.

Covid-19 Impact:

The COVID-19 pandemic has had a major effect on the market for negative photoresist chemicals, leading to delays in international supply chains, reductions in production, and variations in demand. There was a decrease in semiconductor manufacturing and related industries during the early stages of the pandemic due to widespread lockdowns and restrictions on economic activities, which decreased the demand for negative photoresist chemicals. A number of supply chain disruptions, such as factory closures, problems with logistics, and shortages of raw materials, made matters worse and delayed delivery and production timelines.

The Photopolymeric Type segment is expected to be the largest during the forecast period

The photopolymeric type usually holds the largest market share in the negative photoresist chemical market. In order to change from a soluble to an insoluble state, photopolymeric negative photoresists rely on a chemical reaction that is triggered by exposure to light, usually ultraviolet (UV) light. Because photolithography techniques are widely used in semiconductor manufacturing, this market segment is dominated by photopolymeric negative photoresists, which offer high resolution, excellent pattern fidelity, and ease of processing. Moreover, these photoresists are widely used in the electronics, automotive, and healthcare industries for the fabrication of integrated circuits (ICs), microelectromechanical systems (MEMS), and other microfabricated devices.

The Thinner segment is expected to have the highest CAGR during the forecast period

In the negative photoresist chemicals market, the thinner segment usually has the highest CAGR. In negative photoresist processing, thinner chemicals play a critical role in modifying viscosity, improving coating homogeneity, and optimizing film thickness on substrates during application. The need for specialized thinner formulations catered to particular negative photoresist chemistries and application requirements is growing as semiconductor manufacturers and microfabrication facilities aim for increased efficiency, higher yields, and improved process control. Additionally, the thinner segment is anticipated to grow rapidly due to continuous improvements in lithography techniques, including immersion and extreme ultraviolet (EUV) lithography, as well as the growing complexity of semiconductor device architectures.

Region with largest share:

The market for negative photoresist chemicals is normally dominated by the Asia-Pacific region. The region's strong presence in semiconductor manufacturing is responsible for its dominance; this is especially true in nations like China, South Korea, Japan, and Taiwan, which are home to some of the top semiconductor fabrication facilities in the world. The area has a strong ecosystem that includes packaging and testing facilities, semiconductor foundries, and integrated device manufacturers (IDMs), which creates a significant demand for negative photoresist chemicals used in lithography processes.

Region with highest CAGR:

The North American region has the highest CAGR in the market for negative photoresist chemicals. Particularly in the United States, the region benefits from a strong presence of semiconductor manufacturers, research centers, and technological innovators. The semiconductor industry in North America is distinguished by ongoing developments in microfabrication technologies, particularly lithography procedures where chemicals known as negative photoresist play a critical role. Moreover, the region's strong growth in the market for negative photoresist chemicals is partly due to rising investments in research and development, especially in cutting-edge areas like nanotechnology, photonics, and quantum computing.

Key players in the market

Some of the key players in Negative Photoresist Chemicals market include Tokyo Ohka Kogyo, Jiangsu Yoke Technology, Mitsui Chemicals America, LG Chem, DuPont, Merck Group, Shiny Chemical Industrial, JSR Corporation, Fujifilm Electronic Materials, Sumitomo, The Dow Chemical, Kempur Microelectronics and MicroChem.

Key Developments:

In January 2024, Merck KGaA, Darmstadt, Germany, a leading science and technology company, today announced a licensing agreement with Inspirna, Inc. (New York, NY) for ompenaclid (RGX-202), a first-in-class oral inhibitor of the creatine transport channel SLC6A8, and SLC6A8-targeting follow-on compounds. Ompenaclid is currently being evaluated in a Phase II study for the second-line treatment of RAS-mutated (RASmut) advanced or metastatic colorectal cancer (mCRC).

In August 2023, DuPont announced a definitive agreement to sell an 80.1% ownership interest in the Delrin(R) acetal homopolymer (H-POM) business1 to TJC LP (TJC) in a transaction valuing the business at $1.8 billion. TJC has received fully committed financing in connection with the transaction, which is expected to close around year-end 2023, subject to customary closing conditions and regulatory approval.

In May 2023, Dow and New Energy Blue announced a long-term supply agreement in North America in which New Energy Blue will create bio-based ethylene from renewable agricultural residues. Dow expects to purchase this bio-based ethylene, reducing carbon emissions from plastic production, and using it in recyclable applications across transportation, footwear, and packaging.

Types Covered:

  • Photopolymeric Type
  • Photodecomposition Type
  • Photocrosslinked Type
  • Other Types

Chemicals Covered:

  • Thinner
  • Flushing Agent
  • Stripper
  • Other Chemicals

Applications Covered:

  • Wafer Fabrication
  • Printing and Writing Board
  • Lithography
  • Advanced Packaging
  • Display Panel
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances
Product Code: SMRC26667

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Negative Photoresist Chemicals Market, By Type

  • 5.1 Introduction
  • 5.2 Photopolymeric Type
  • 5.3 Photodecomposition Type
  • 5.4 Photocrosslinked Type
  • 5.5 Other Types

6 Global Negative Photoresist Chemicals Market, By Chemical

  • 6.1 Introduction
  • 6.2 Thinner
  • 6.3 Flushing Agent
  • 6.4 Stripper
  • 6.5 Other Chemicals

7 Global Negative Photoresist Chemicals Market, By Application

  • 7.1 Introduction
  • 7.2 Wafer Fabrication
  • 7.3 Printing and Writing Board
  • 7.4 Lithography
  • 7.5 Advanced Packaging
  • 7.6 Display Panel
  • 7.7 Other Applications

8 Global Negative Photoresist Chemicals Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Tokyo Ohka Kogyo
  • 10.2 Jiangsu Yoke Technology
  • 10.3 Mitsui Chemicals America
  • 10.4 LG Chem
  • 10.5 DuPont
  • 10.6 Merck Group
  • 10.7 Shiny Chemical Industrial
  • 10.8 JSR Corporation
  • 10.9 Fujifilm Electronic Materials
  • 10.10 Sumitomo
  • 10.11 The Dow Chemical
  • 10.12 Kempur Microelectronics
  • 10.13 MicroChem
Product Code: SMRC26667

List of Tables

  • Table 1 Global Negative Photoresist Chemicals Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Negative Photoresist Chemicals Market Outlook, By Type (2022-2030) ($MN)
  • Table 3 Global Negative Photoresist Chemicals Market Outlook, By Photopolymeric Type (2022-2030) ($MN)
  • Table 4 Global Negative Photoresist Chemicals Market Outlook, By Photodecomposition Type (2022-2030) ($MN)
  • Table 5 Global Negative Photoresist Chemicals Market Outlook, By Photocrosslinked Type (2022-2030) ($MN)
  • Table 6 Global Negative Photoresist Chemicals Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 7 Global Negative Photoresist Chemicals Market Outlook, By Chemical (2022-2030) ($MN)
  • Table 8 Global Negative Photoresist Chemicals Market Outlook, By Thinner (2022-2030) ($MN)
  • Table 9 Global Negative Photoresist Chemicals Market Outlook, By Flushing Agent (2022-2030) ($MN)
  • Table 10 Global Negative Photoresist Chemicals Market Outlook, By Stripper (2022-2030) ($MN)
  • Table 11 Global Negative Photoresist Chemicals Market Outlook, By Other Chemicals (2022-2030) ($MN)
  • Table 12 Global Negative Photoresist Chemicals Market Outlook, By Application (2022-2030) ($MN)
  • Table 13 Global Negative Photoresist Chemicals Market Outlook, By Wafer Fabrication (2022-2030) ($MN)
  • Table 14 Global Negative Photoresist Chemicals Market Outlook, By Printing and Writing Board (2022-2030) ($MN)
  • Table 15 Global Negative Photoresist Chemicals Market Outlook, By Lithography (2022-2030) ($MN)
  • Table 16 Global Negative Photoresist Chemicals Market Outlook, By Advanced Packaging (2022-2030) ($MN)
  • Table 17 Global Negative Photoresist Chemicals Market Outlook, By Display Panel (2022-2030) ($MN)
  • Table 18 Global Negative Photoresist Chemicals Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 19 North America Negative Photoresist Chemicals Market Outlook, By Country (2022-2030) ($MN)
  • Table 20 North America Negative Photoresist Chemicals Market Outlook, By Type (2022-2030) ($MN)
  • Table 21 North America Negative Photoresist Chemicals Market Outlook, By Photopolymeric Type (2022-2030) ($MN)
  • Table 22 North America Negative Photoresist Chemicals Market Outlook, By Photodecomposition Type (2022-2030) ($MN)
  • Table 23 North America Negative Photoresist Chemicals Market Outlook, By Photocrosslinked Type (2022-2030) ($MN)
  • Table 24 North America Negative Photoresist Chemicals Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 25 North America Negative Photoresist Chemicals Market Outlook, By Chemical (2022-2030) ($MN)
  • Table 26 North America Negative Photoresist Chemicals Market Outlook, By Thinner (2022-2030) ($MN)
  • Table 27 North America Negative Photoresist Chemicals Market Outlook, By Flushing Agent (2022-2030) ($MN)
  • Table 28 North America Negative Photoresist Chemicals Market Outlook, By Stripper (2022-2030) ($MN)
  • Table 29 North America Negative Photoresist Chemicals Market Outlook, By Other Chemicals (2022-2030) ($MN)
  • Table 30 North America Negative Photoresist Chemicals Market Outlook, By Application (2022-2030) ($MN)
  • Table 31 North America Negative Photoresist Chemicals Market Outlook, By Wafer Fabrication (2022-2030) ($MN)
  • Table 32 North America Negative Photoresist Chemicals Market Outlook, By Printing and Writing Board (2022-2030) ($MN)
  • Table 33 North America Negative Photoresist Chemicals Market Outlook, By Lithography (2022-2030) ($MN)
  • Table 34 North America Negative Photoresist Chemicals Market Outlook, By Advanced Packaging (2022-2030) ($MN)
  • Table 35 North America Negative Photoresist Chemicals Market Outlook, By Display Panel (2022-2030) ($MN)
  • Table 36 North America Negative Photoresist Chemicals Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 37 Europe Negative Photoresist Chemicals Market Outlook, By Country (2022-2030) ($MN)
  • Table 38 Europe Negative Photoresist Chemicals Market Outlook, By Type (2022-2030) ($MN)
  • Table 39 Europe Negative Photoresist Chemicals Market Outlook, By Photopolymeric Type (2022-2030) ($MN)
  • Table 40 Europe Negative Photoresist Chemicals Market Outlook, By Photodecomposition Type (2022-2030) ($MN)
  • Table 41 Europe Negative Photoresist Chemicals Market Outlook, By Photocrosslinked Type (2022-2030) ($MN)
  • Table 42 Europe Negative Photoresist Chemicals Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 43 Europe Negative Photoresist Chemicals Market Outlook, By Chemical (2022-2030) ($MN)
  • Table 44 Europe Negative Photoresist Chemicals Market Outlook, By Thinner (2022-2030) ($MN)
  • Table 45 Europe Negative Photoresist Chemicals Market Outlook, By Flushing Agent (2022-2030) ($MN)
  • Table 46 Europe Negative Photoresist Chemicals Market Outlook, By Stripper (2022-2030) ($MN)
  • Table 47 Europe Negative Photoresist Chemicals Market Outlook, By Other Chemicals (2022-2030) ($MN)
  • Table 48 Europe Negative Photoresist Chemicals Market Outlook, By Application (2022-2030) ($MN)
  • Table 49 Europe Negative Photoresist Chemicals Market Outlook, By Wafer Fabrication (2022-2030) ($MN)
  • Table 50 Europe Negative Photoresist Chemicals Market Outlook, By Printing and Writing Board (2022-2030) ($MN)
  • Table 51 Europe Negative Photoresist Chemicals Market Outlook, By Lithography (2022-2030) ($MN)
  • Table 52 Europe Negative Photoresist Chemicals Market Outlook, By Advanced Packaging (2022-2030) ($MN)
  • Table 53 Europe Negative Photoresist Chemicals Market Outlook, By Display Panel (2022-2030) ($MN)
  • Table 54 Europe Negative Photoresist Chemicals Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 55 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Country (2022-2030) ($MN)
  • Table 56 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Type (2022-2030) ($MN)
  • Table 57 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Photopolymeric Type (2022-2030) ($MN)
  • Table 58 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Photodecomposition Type (2022-2030) ($MN)
  • Table 59 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Photocrosslinked Type (2022-2030) ($MN)
  • Table 60 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 61 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Chemical (2022-2030) ($MN)
  • Table 62 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Thinner (2022-2030) ($MN)
  • Table 63 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Flushing Agent (2022-2030) ($MN)
  • Table 64 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Stripper (2022-2030) ($MN)
  • Table 65 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Other Chemicals (2022-2030) ($MN)
  • Table 66 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Application (2022-2030) ($MN)
  • Table 67 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Wafer Fabrication (2022-2030) ($MN)
  • Table 68 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Printing and Writing Board (2022-2030) ($MN)
  • Table 69 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Lithography (2022-2030) ($MN)
  • Table 70 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Advanced Packaging (2022-2030) ($MN)
  • Table 71 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Display Panel (2022-2030) ($MN)
  • Table 72 Asia Pacific Negative Photoresist Chemicals Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 73 South America Negative Photoresist Chemicals Market Outlook, By Country (2022-2030) ($MN)
  • Table 74 South America Negative Photoresist Chemicals Market Outlook, By Type (2022-2030) ($MN)
  • Table 75 South America Negative Photoresist Chemicals Market Outlook, By Photopolymeric Type (2022-2030) ($MN)
  • Table 76 South America Negative Photoresist Chemicals Market Outlook, By Photodecomposition Type (2022-2030) ($MN)
  • Table 77 South America Negative Photoresist Chemicals Market Outlook, By Photocrosslinked Type (2022-2030) ($MN)
  • Table 78 South America Negative Photoresist Chemicals Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 79 South America Negative Photoresist Chemicals Market Outlook, By Chemical (2022-2030) ($MN)
  • Table 80 South America Negative Photoresist Chemicals Market Outlook, By Thinner (2022-2030) ($MN)
  • Table 81 South America Negative Photoresist Chemicals Market Outlook, By Flushing Agent (2022-2030) ($MN)
  • Table 82 South America Negative Photoresist Chemicals Market Outlook, By Stripper (2022-2030) ($MN)
  • Table 83 South America Negative Photoresist Chemicals Market Outlook, By Other Chemicals (2022-2030) ($MN)
  • Table 84 South America Negative Photoresist Chemicals Market Outlook, By Application (2022-2030) ($MN)
  • Table 85 South America Negative Photoresist Chemicals Market Outlook, By Wafer Fabrication (2022-2030) ($MN)
  • Table 86 South America Negative Photoresist Chemicals Market Outlook, By Printing and Writing Board (2022-2030) ($MN)
  • Table 87 South America Negative Photoresist Chemicals Market Outlook, By Lithography (2022-2030) ($MN)
  • Table 88 South America Negative Photoresist Chemicals Market Outlook, By Advanced Packaging (2022-2030) ($MN)
  • Table 89 South America Negative Photoresist Chemicals Market Outlook, By Display Panel (2022-2030) ($MN)
  • Table 90 South America Negative Photoresist Chemicals Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 91 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Country (2022-2030) ($MN)
  • Table 92 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Type (2022-2030) ($MN)
  • Table 93 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Photopolymeric Type (2022-2030) ($MN)
  • Table 94 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Photodecomposition Type (2022-2030) ($MN)
  • Table 95 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Photocrosslinked Type (2022-2030) ($MN)
  • Table 96 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 97 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Chemical (2022-2030) ($MN)
  • Table 98 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Thinner (2022-2030) ($MN)
  • Table 99 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Flushing Agent (2022-2030) ($MN)
  • Table 100 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Stripper (2022-2030) ($MN)
  • Table 101 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Other Chemicals (2022-2030) ($MN)
  • Table 102 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Application (2022-2030) ($MN)
  • Table 103 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Wafer Fabrication (2022-2030) ($MN)
  • Table 104 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Printing and Writing Board (2022-2030) ($MN)
  • Table 105 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Lithography (2022-2030) ($MN)
  • Table 106 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Advanced Packaging (2022-2030) ($MN)
  • Table 107 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Display Panel (2022-2030) ($MN)
  • Table 108 Middle East & Africa Negative Photoresist Chemicals Market Outlook, By Other Applications (2022-2030) ($MN)
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!