PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1494842
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1494842
According to Stratistics MRC, the Global Hydrogen Energy Storage Market is accounted for $18.07 billion in 2024 and is expected to reach $30.47 billion by 2030 growing at a CAGR of 9.1% during the forecast period. With many benefits over conventional energy storage systems, hydrogen energy storage is a cutting-edge technique for storing energy in the form of hydrogen gas. With the use of electricity, which is frequently generated from renewable energy sources like solar or wind power; this technology produces hydrogen by splitting water into hydrogen and oxygen through the process of electrolysis. Subsequently, the hydrogen can be kept in liquid form at cryogenic temperatures, in compressed gas form, or chemically bound within metal hydrides.
According to the International Energy Agency (IEA), hydrogen energy storage is a crucial technology for achieving a sustainable energy future and meeting global decarbonisation targets.
Integration of renewable energy
Due to the fact that they are by nature sporadic, renewable energy sources like solar and wind power only generate energy when the sun or wind blows. It becomes difficult to balance supply and demand on the grid as a result of this intermittency. Additionally, by storing extra renewable energy when output exceeds demand and converting it back to electricity during times of low production, hydrogen energy storage can help solve this problem. Because of this property, hydrogen plays a crucial role in maintaining grid stability and facilitating the increased share of renewable energy sources in the energy mix.
High starting prices
The substantial upfront costs of hydrogen energy storage systems present a major obstacle to their widespread adoption. These expenses cover the initial investment in fuel cells, distribution infrastructure, hydrogen storage tanks, and electrolysis units. In particular, electrolysis is costly because it needs precise engineering and sophisticated materials. Furthermore, the infrastructure needed to safely transport and store hydrogen, such as specialized pipelines and high-pressure tanks, raises the overall cost as well.
Technological developments in hydrogen storage
New prospects for more effective, secure, and affordable storage solutions are being created by ongoing research and development in hydrogen storage technologies. Compared to conventional techniques, advances in solid-state storage, such as metal hydrides and carbon-based materials, offer higher energy densities and enhanced safety. Technological advances in high-pressure tanks and cryogenic storage are also improving the viability of hydrogen storage for a range of uses. Moreover, in order to overcome the current obstacles and increase the appeal of hydrogen storage as a large-scale energy storage and transportation option, technological advancements are essential.
Threats from alternative energy storage technologies
Alternative energy storage technologies like lithium-ion batteries, pumped hydroelectric storage, and compressed air energy storage pose a significant threat to the hydrogen energy storage market. Because of their established supply chains, manufacturing prowess, and economies of scale, these technologies have already attained notable market penetration. Particularly in applications requiring quick response times and high power densities, lithium-ion batteries have experienced significant cost reductions and performance improvements, making them a strong rival to hydrogen storage.
The market for hydrogen energy storage has been significantly impacted by the COVID-19 pandemic, which has resulted in supply chain disruptions, project development delays, and economic uncertainty. Project delays and cost overruns have resulted from the deployment of hydrogen infrastructure projects and research activities being slowed down by lockdown measures, travel restrictions, and workforce disruptions. Furthermore, the immediate need for hydrogen as a feedstock or energy carrier has decreased due to the pandemic's decreased industrial activity and energy demand, especially in industries like transportation, manufacturing, and construction.
The Chemical Storage segment is expected to be the largest during the forecast period
It is projected that chemical storage will command the largest market share. Chemical storage is the process of storing hydrogen in chemical compounds with high energy densities and extended storage lives, such as metal hydrides or liquid organic hydrogen carriers. For instance, metal hydrides absorb hydrogen gas to create stable compounds and then release it through depressurization or heating when required. Moreover, these chemical storage techniques are effective and flexible in storing and releasing hydrogen, which makes them appropriate for stationary uses in industrial processes, grid balancing, and renewable energy integration.
The Gas segment is expected to have the highest CAGR during the forecast period
The segment with the highest predicted CAGR is gas storage. Gas storage is the practice of keeping hydrogen in a gaseous state for later use. This is usually done in subterranean caverns or high-pressure tanks, which provide high energy densities and quick reaction times. Applications that call for quick and frequent cycling, like backup power generation, peak shaving, and grid stabilization, are ideally suited for this approach. Additionally, gas storage systems offer adaptable and scalable ways to handle variations in the supply and demand for energy.
The market for hydrogen energy storage is dominated by Asia Pacific. Numerous government initiatives and investments, particularly in nations like China, South Korea, and Japan, are what fuel this dominance in hydrogen technologies. The aspirational hydrogen policies of these countries are to integrate renewable energy sources, encourage the use of hydrogen fuel cell vehicles, and decarbonize their economies. Furthermore, contributing to the region's leadership in hydrogen energy storage is Asia Pacific's robust industrial base and growing need for clean energy solutions.
In the global market for hydrogen energy storage, Europe is expected to grow at the highest CAGR. Tight environmental regulations, high investments in hydrogen infrastructure and technology, and ambitious targets for renewable energy are driving this growth. Through programs aimed at increasing hydrogen production, storage, and distribution, the European Union hopes to become a global leader in hydrogen technologies through the Green Deal and the Hydrogen Strategy. However, innovation and market expansion are also being fueled by encouraging laws, financial incentives, and partnerships between industry players, government agencies, and academic institutions.
Key players in the market
Some of the key players in Hydrogen Energy Storage market include Chart Industries, Fuelcell Energy, Hexagon Composites, Air Liquide, Iwatani Corporation, Linde PLC, Engie, Hydrogenics, Steelhead Composites Inc., Air Products Inc., Grz Technologies, Worthington Industries, Cummins Inc., Nedstack Fuel Cell Technology BV and Pragma Industries.
In April 2024, FuelCell Energy, Inc. and ExxonMobil Technology and Engineering Company announced an updated and extended joint development agreement (JDA) for the deployment of their unique carbonate fuel cell technology for carbon capture. According to the new agreement, FuelCell Energy can now incorporate elements of the jointly developed technology into its existing carbon capture products currently being marketed to customers.
In February 2024, Air Liquide and Sasol have signed new Power Purchase Agreements (PPAs) with Enel Green Power RSA[1] for the long term supply of an additional capacity of 110 MW of renewable power to Sasol's Secunda site in South Africa. This is the fourth set of PPAs signed by Air Liquide and Sasol after those announced in 2023. Together, these PPAs represent a total renewable power capacity of around 690 MW.
In May 2023, two major market leaders, Koch Engineered Solutions (KES) and Chart Industries, have signed a Memorandum of Understanding, marking the beginning of their CCUS collaboration and a combined pursuit of new knowledge and new carbon capture opportunities. Chart Industries is a global manufacturer of highly engineered equipment, servicing projects in the clean energy and industrial gas markets.
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.