Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1489459

Cover Image

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1489459

Lithium Iron Phosphate Batteries Market Forecasts to 2030 - Global Analysis By Design, Voltage (Low Voltage, Medium Voltage and High Voltage), Capacity, Application, End User and By Geography

PUBLISHED:
PAGES: 200+ Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
PDF (Single User License)
USD 4150
PDF (2-5 User License)
USD 5250
PDF & Excel (Site License)
USD 6350
PDF & Excel (Global Site License)
USD 7500

Add to Cart

According to Stratistics MRC, the Global Lithium Iron Phosphate (LFP) Batteries Market is accounted for $14.9 billion in 2023 and is expected to reach $46.7 billion by 2030 growing at a CAGR of 17.7% during the forecast period. Lithium Iron Phosphate (LiFePO4) batteries are rechargeable lithium-ion batteries known for their high energy density, long cycle life, and enhanced safety features. Utilizing iron phosphate as the cathode material, these batteries offer stable performance, reduced risk of thermal runaway, and environmental friendliness. Batteries are used in electric vehicles, portable electronics, and various other industrial and commercial industries.

According to a report by the International Energy Agency (IEA), the global electric vehicle (EV) stock reached 10 million in 2020, with battery electric vehicles (BEVs) accounting for 67% of new EV registrations.

Market Dynamics:

Driver:

Increasing energy storage demand

The growing demand for energy storage solutions across various industries, such as renewable energy, grid storage, and electric vehicles, is a key driver for the lithium-ion phosphate battery market. Lithium-iron phosphate batteries offer high safety, long cycle life, and cost-effectiveness, making them an attractive choice for energy storage applications. The increasing adoption of renewable energy sources and the need for reliable storage solutions further fuel the demand for lithium-iron phosphate batteries.

Restraint:

Lower energy density

One of the main restraints for the lithium iron phosphate batteries market is their lower energy density compared to other lithium-ion battery chemistries, such as NMC and NCA. This limitation can result in reduced driving range for electric vehicles and larger battery sizes for energy storage applications. The lower energy density may hinder the adoption of LFP batteries in certain applications where high energy density is crucial.

Opportunity:

Growing electric vehicle market

The rapidly growing electric vehicle market presents a significant opportunity for the lithium iron phosphate batteries market. LFP batteries are increasingly being adopted by EV manufacturers due to their safety, long cycle life, and lower cost compared to other lithium-ion chemistries. The increasing demand for electric vehicles, driven by government incentives, environmental concerns, and falling battery prices, is expected to drive the growth of the LFP battery market.

Threat:

Geopolitical instability

Geopolitical instability and trade tensions can pose a threat to the lithium iron phosphate batteries market. The supply chain for LFP batteries heavily relies on raw materials sourced from specific regions, such as lithium from South America and Australia, and phosphate from China. Geopolitical tensions, trade disputes, or supply chain disruptions can lead to price volatility and affect the availability of raw materials, potentially impacting the production and cost of LFP batteries.

Covid-19 Impact:

The COVID-19 pandemic has had both positive and negative impacts on the lithium iron phosphate batteries market. The pandemic disrupted supply chains, causing delays in raw material availability and production. However, the increased demand for energy storage solutions, driven by the need for reliable power backup during lockdowns and the shift towards remote work, has positively influenced the market.

The automotive segment is expected to be the largest during the forecast period

The automotive segment is expected to dominate the lithium iron phosphate batteries market during the forecast period. The increasing adoption of electric vehicles, particularly in countries with supportive government policies and incentives, is driving the demand for LFP batteries in the automotive sector. LFP batteries offer a cost-effective and safe solution for electric vehicles, making them an attractive choice for EV manufacturers, which further fuels segment growth.

The very high capacity (Above 100,001 mAh) segment is expected to have the highest CAGR during the forecast period

The very high capacity segment, encompassing lithium iron phosphate batteries with capacities above 100,001 mAh, is projected to experience lucrative growth during the forecast period. Higher capacity batteries enable longer driving ranges for EVs and more efficient energy storage solutions. This growth can be attributed to increasing demand for batteries with longer runtime and higher energy storage capabilities, particularly in applications such as electric vehicles, grid-scale energy storage, and large-scale industrial backup power systems, where battery life and greater energy reserves extended are critical for optimal performance and reliability.

Region with largest share:

The Asia Pacific region is expected to hold the largest share of the lithium iron phosphate batteries market. Countries like China, Japan, and South Korea have a strong presence in the electronics and automotive industries, driving the demand for LFP batteries. China, in particular, has been at the forefront of LFP battery production and adoption, with supportive government policies and a rapidly growing electric vehicle market. The region's large population, increasing energy storage requirements, and focus on renewable energy further contribute to its dominant position in the market.

Region with highest CAGR:

The Europe region is expected to experience the highest CAGR in the lithium iron phosphate batteries market during the forecast period. The growth can be attributed to the increasing adoption of electric vehicles and the push towards renewable energy integration in the region. European countries have set ambitious targets for reducing carbon emissions and promoting sustainable transportation, which is driving the demand for LFP batteries. Additionally, the presence of major automotive manufacturers coupled with supportive government policies, is expected to fuel the growth of the LFP battery market in Europe.

Key players in the market

Some of the key players in Lithium Iron Phosphate (LFP) Batteries Market include A123 Systems LLC, BYD Company Ltd., Contemporary Amperex Technology Co. Limited (CATL), East Penn Manufacturing Company, Inc., EnerSys, EVE Energy Co., Ltd., GS Yuasa Corporation, Hitachi Chemical Co., Ltd., Johnson Controls International plc, Kokam Co. Ltd., LG Chem Ltd., Panasonic Corporation, Saft Groupe S.A., Samsung SDI Co. Ltd., Shenzhen BAK Battery Co., Ltd., Tesla, Inc., Tianjin Lishen Battery Joint-Stock Co., Ltd., Toshiba Corporation, Valence Technology, Inc. and Winston Battery Limited.

Key Developments:

In April 2024, CATL launched the battery pack with Yutung Bus Co to power commercial vehicles like buses and different classes of trucks. According to the company, the new long-lasting EV battery has zero degradation through the first 1,000 cycles. The new EV battery pack, made with CATL, has a 932,000 mile (1.5 million km), 15-year warranty.

In January 2024, Tesla (TSLA.O), opens new tab is expanding its battery facility in Sparks, Nevada to bring the supply chain for cheaper lithium iron phosphate batteries (LFP) to the United States, Bloomberg News reported on Wednesday.

Designs Covered:

  • Cells
  • Battery Packs

Voltages Covered:

  • Low Voltage (Below 12 V)
  • Medium Voltage (12-36 V)
  • High Voltage (Above 36 V)

Capacities Covered:

  • Low Capacity (0-16,250 mAh)
  • Medium Capacity (16,251-50,000 mAh)
  • High Capacity (50,001-100,000 mAh)
  • Very High Capacity (Above 100,001 mAh)

Applications Covered:

  • Portable
  • Stationary

End Users Covered:

  • Automotive
  • Power
  • Industrial
  • Marine
  • Aerospace
  • Consumer Electronics
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances
Product Code: SMRC26245

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Lithium Iron Phosphate Batteries Market, By Design

  • 5.1 Introduction
  • 5.2 Cells
  • 5.3 Battery Packs

6 Global Lithium Iron Phosphate Batteries Market, By Voltage

  • 6.1 Introduction
  • 6.2 Low Voltage (Below 12 V)
  • 6.3 Medium Voltage (12-36 V)
  • 6.4 High Voltage (Above 36 V)

7 Global Lithium Iron Phosphate Batteries Market, By Capacity

  • 7.1 Introduction
  • 7.2 Low Capacity (0-16,250 mAh)
  • 7.3 Medium Capacity (16,251-50,000 mAh)
  • 7.4 High Capacity (50,001-100,000 mAh)
  • 7.5 Very High Capacity (Above 100,001 mAh)

8 Global Lithium Iron Phosphate Batteries Market, By Application

  • 8.1 Introduction
  • 8.2 Portable
  • 8.3 Stationary

9 Global Lithium Iron Phosphate Batteries Market, By End User

  • 9.1 Introduction
  • 9.2 Automotive
    • 9.2.1 2- & 3-wheelers
    • 9.2.2 Battery Electric Vehicle (BEV)
    • 9.2.3 Hybrid Electric Vehicle (HEV)
    • 9.2.4 Plug-In Hybrid Electric Vehicle (PHEV)
    • 9.2.5 Bus & Truck
  • 9.3 Power
    • 9.3.1 Stationary
    • 9.3.2 Residential
  • 9.4 Industrial
    • 9.4.1 Construction Equipment
    • 9.4.2 Forklifts
    • 9.4.3 Mining Equipment
  • 9.5 Marine
    • 9.5.1 Commercial
    • 9.5.2 Tourism
    • 9.5.3 Navy
  • 9.6 Aerospace
  • 9.7 Consumer Electronics
  • 9.8 Other End Users

10 Global Lithium Iron Phosphate Batteries Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 A123 Systems LLC
  • 12.2 BYD Company Ltd.
  • 12.3 Contemporary Amperex Technology Co. Limited (CATL)
  • 12.4 East Penn Manufacturing Company, Inc.
  • 12.5 EnerSys
  • 12.6 EVE Energy Co., Ltd.
  • 12.7 GS Yuasa Corporation
  • 12.8 Hitachi Chemical Co., Ltd.
  • 12.9 Johnson Controls International plc
  • 12.10 Kokam Co. Ltd.
  • 12.11 LG Chem Ltd.
  • 12.12 Panasonic Corporation
  • 12.13 Saft Groupe S.A.
  • 12.14 Samsung SDI Co. Ltd.
  • 12.15 Shenzhen BAK Battery Co., Ltd.
  • 12.16 Tesla, Inc.
  • 12.17 Tianjin Lishen Battery Joint-Stock Co., Ltd.
  • 12.18 Toshiba Corporation
  • 12.19 Valence Technology, Inc.
  • 12.20 Winston Battery Limited
Product Code: SMRC26245

List of Tables

  • Table 1 Global Lithium Iron Phosphate Batteries Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global Lithium Iron Phosphate Batteries Market Outlook, By Design (2021-2030) ($MN)
  • Table 3 Global Lithium Iron Phosphate Batteries Market Outlook, By Cells (2021-2030) ($MN)
  • Table 4 Global Lithium Iron Phosphate Batteries Market Outlook, By Battery Packs (2021-2030) ($MN)
  • Table 5 Global Lithium Iron Phosphate Batteries Market Outlook, By Voltage (2021-2030) ($MN)
  • Table 6 Global Lithium Iron Phosphate Batteries Market Outlook, By Low Voltage (Below 12 V) (2021-2030) ($MN)
  • Table 7 Global Lithium Iron Phosphate Batteries Market Outlook, By Medium Voltage (12-36 V) (2021-2030) ($MN)
  • Table 8 Global Lithium Iron Phosphate Batteries Market Outlook, By High Voltage (Above 36 V) (2021-2030) ($MN)
  • Table 9 Global Lithium Iron Phosphate Batteries Market Outlook, By Capacity (2021-2030) ($MN)
  • Table 10 Global Lithium Iron Phosphate Batteries Market Outlook, By Low Capacity (0-16,250 mAh) (2021-2030) ($MN)
  • Table 11 Global Lithium Iron Phosphate Batteries Market Outlook, By Medium Capacity (16,251-50,000 mAh) (2021-2030) ($MN)
  • Table 12 Global Lithium Iron Phosphate Batteries Market Outlook, By High Capacity (50,001-100,000 mAh) (2021-2030) ($MN)
  • Table 13 Global Lithium Iron Phosphate Batteries Market Outlook, By Very High Capacity (Above 100,001 mAh) (2021-2030) ($MN)
  • Table 14 Global Lithium Iron Phosphate Batteries Market Outlook, By Application (2021-2030) ($MN)
  • Table 15 Global Lithium Iron Phosphate Batteries Market Outlook, By Portable (2021-2030) ($MN)
  • Table 16 Global Lithium Iron Phosphate Batteries Market Outlook, By Stationary (2021-2030) ($MN)
  • Table 17 Global Lithium Iron Phosphate Batteries Market Outlook, By End User (2021-2030) ($MN)
  • Table 18 Global Lithium Iron Phosphate Batteries Market Outlook, By Automotive (2021-2030) ($MN)
  • Table 19 Global Lithium Iron Phosphate Batteries Market Outlook, By 2- & 3-wheelers (2021-2030) ($MN)
  • Table 20 Global Lithium Iron Phosphate Batteries Market Outlook, By Battery Electric Vehicle (BEV) (2021-2030) ($MN)
  • Table 21 Global Lithium Iron Phosphate Batteries Market Outlook, By Hybrid Electric Vehicle (HEV) (2021-2030) ($MN)
  • Table 22 Global Lithium Iron Phosphate Batteries Market Outlook, By Plug-In Hybrid Electric Vehicle (PHEV) (2021-2030) ($MN)
  • Table 23 Global Lithium Iron Phosphate Batteries Market Outlook, By Bus & Truck (2021-2030) ($MN)
  • Table 24 Global Lithium Iron Phosphate Batteries Market Outlook, By Power (2021-2030) ($MN)
  • Table 25 Global Lithium Iron Phosphate Batteries Market Outlook, By Stationary (2021-2030) ($MN)
  • Table 26 Global Lithium Iron Phosphate Batteries Market Outlook, By Residential (2021-2030) ($MN)
  • Table 27 Global Lithium Iron Phosphate Batteries Market Outlook, By Industrial (2021-2030) ($MN)
  • Table 28 Global Lithium Iron Phosphate Batteries Market Outlook, By Construction Equipment (2021-2030) ($MN)
  • Table 29 Global Lithium Iron Phosphate Batteries Market Outlook, By Forklifts (2021-2030) ($MN)
  • Table 30 Global Lithium Iron Phosphate Batteries Market Outlook, By Mining Equipment (2021-2030) ($MN)
  • Table 31 Global Lithium Iron Phosphate Batteries Market Outlook, By Marine (2021-2030) ($MN)
  • Table 32 Global Lithium Iron Phosphate Batteries Market Outlook, By Commercial (2021-2030) ($MN)
  • Table 33 Global Lithium Iron Phosphate Batteries Market Outlook, By Tourism (2021-2030) ($MN)
  • Table 34 Global Lithium Iron Phosphate Batteries Market Outlook, By Navy (2021-2030) ($MN)
  • Table 35 Global Lithium Iron Phosphate Batteries Market Outlook, By Aerospace (2021-2030) ($MN)
  • Table 36 Global Lithium Iron Phosphate Batteries Market Outlook, By Consumer Electronics (2021-2030) ($MN)
  • Table 37 Global Lithium Iron Phosphate Batteries Market Outlook, By Other End Users (2021-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!