PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1447083
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1447083
According to Stratistics MRC, the Global Syngas Market is accounted for $53.6 billion in 2023 and is expected to reach $92.5 billion by 2030 growing at a CAGR of 8.1% during the forecast period. Syngas, short for synthesis gas, is a versatile fuel and chemical feedstock composed primarily of carbon monoxide (CO) and hydrogen (H2). It is typically produced through gasification, a process where carbonaceous materials such as coal, biomass, or natural gas undergo high-temperature reactions with a controlled amount of oxygen or steam. Syngas serves as a precursor for various industrial processes, including the production of hydrogen, ammonia, and methanol. Its flexibility lies in its ability to be transformed into a range of valuable products, including liquid fuels and chemicals, making it a vital component in the transition towards sustainable and diverse energy sources.
According to the United States Geological 2022, global ammonia production is estimated to be 150 million metric tons in 2021.
Government support and incentives
Governments often offer financial aid, tax incentives, and subsidies to encourage the development and utilization of syngas technologies. These incentives aim to stimulate investment in syngas production plants, research and development, and infrastructure development. In addition, regulatory policies such as renewable energy targets, carbon pricing mechanisms, and emission reduction goals further bolster the syngas market.
High cost
The extraction or processing of feedstocks like coal or biomass can be expensive, requiring significant investments in mining operations or biomass collection and processing facilities. Additionally, the transportation costs associated with these feedstocks can further add to the overall expense. These processes involve high temperatures, pressures, and the use of catalysts, all of which contribute to the operational costs and hamper this market expansion.
Advancements in gasification technologies
Innovations in gasification processes have enabled the production of high-quality syngas with tailored compositions suitable for diverse end uses. These technological advancements have led to expanded applications of syngas across various sectors, including power generation, chemicals, fuels, and fertilizers. Furthermore, this versatility has spurred investment in syngas-related projects worldwide, driving market growth.
Environmental impacts
Carbon emissions are one of the primary environmental concerns associated with the syngas that contribute to climate change and global warming. The combustion of syngas for energy generation can release pollutants, adversely affecting air quality, human health, and ecosystems. Moreover, the extraction and processing of certain feedstocks for syngas production, such as coal or biomass, can have detrimental effects on land, water, and biodiversity, which significantly impede this market growth.
Covid-19 Impact
The global syngas market has been severely impacted by the COVID-19 pandemic, which has had a negative impact on the industry as a whole. Industries such as petrochemicals, fertilizers, and energy generation, which heavily rely on syngas, faced operational challenges due to reduced production capacities and decreased consumer demand. The economic downturn resulting from the pandemic led to a decline in investments and project delays in the syngas sector. Additionally, travel restrictions and health concerns hindered this market's growth.
The fixed bed segment is expected to be the largest during the forecast period
The fixed bed segment is estimated to hold the largest share due to its versatile gas mixture, which is primarily composed of carbon monoxide and hydrogen. These reactors consist of a stationary bed of catalyst material, typically supported by a grid or other structure. Moreover, in fixed-bed reactors, the catalyst bed provides a large surface area for reactions to occur, promoting the conversion of feedstock into syngas for continuous operation and efficient utilization of the catalyst over time, which is driving this segment's growth.
The auto thermal reforming segment is expected to have the highest CAGR during the forecast period
The auto thermal reforming segment is anticipated to have highest CAGR during the forecast period due to the simultaneous reaction of hydrocarbons with oxygen and steam, typically facilitated by a catalyst, to generate syngas comprising hydrogen (H2) and carbon monoxide (CO). In addition, ATR technology holds significant promise due to its versatility in utilizing a wide range of feedstocks, including natural gas, methane, and even renewable sources like biomass or waste, thereby reducing energy consumption and costs and driving the size of this segment.
North America commanded the largest market share during the extrapolated period owing to the region's abundant shale gas reserves, which provide a cost-effective feedstock for syngas production through processes like steam methane reforming and gasification. Stringent environmental regulations have spurred the adoption of cleaner syngas production technologies. Moreover, increasing investment in infrastructure for syngas-based applications, including ammonia production, methanol synthesis, and Fischer-Tropsch synthesis for liquid fuels, has propelled market growth in this region.
Europe is expected to witness highest CAGR over the projection period, owing to various factors, including increasing energy demand, environmental concerns, and government initiatives to promote renewable energy sources. This region is home to some of the key players, such as BASF SE, Air Products and Chemicals Inc., and Shell PLC. Additionally, the region's emphasis on transitioning towards cleaner energy alternatives and reducing dependence on fossil fuels is also contributing to its market expansion in the region.
Key players in the market
Some of the key players in the Syngas Market include Air Products and Chemicals Inc., A.H.T Syngas Technology NV, John Wood Group PLC, Air Liquide, Linde PLC, Maire Tecnimont Spa, Airpower Technologies Limited, KBR Inc., Technip Energies NV, Sasol, Topsoe AS, Shell PLC, BASF SE, Dakota Gasification Company and OXEA GmbH.
In January 2024, Air Liquide and TotalEnergies announce the launch of TEAL Mobility, a joint venture to create the leader in hydrogen distribution for heavy duty vehicles in Europe.
In January 2024, Shell has reached an agreement to sell its Nigerian onshore subsidiary, The Shell Petroleum Development Company of Nigeria Limited (SPDC), to Renaissance, a consortium of five companies comprising four exploration and production companies based in Nigeria and an international energy group.
In November 2023, Air Liquide, signed a Memorandum of Understanding (MoU) to collaborate on accelerating the development of low-carbon hydrogen in Japan and contribute to the energy transition.
In October 2023, KBR announced that it has developed an advanced green methanol technology, PureM(SM), augmenting its leading portfolio of clean ammonia and hydrogen technologies.