PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1308651
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1308651
According to Stratistics MRC, the Global Aerospace Battery Technology Market is accounted for $104.69 billion in 2023 and is expected to reach $196.35 billion by 2030 growing at a CAGR of 9.4% during the forecast period. Many purposes such as ground power, emergency power, enhancing DC bus stability, and fault clearing call for the employment of aircraft batteries. Lead-acid batteries are used in most small private aeroplanes. Nickel-cadmium (NiCd) batteries are used in the majority of commercial and business aircraft. Other lead acid battery types, such valve-regulated lead-acid (VRLA) batteries, are becoming accessible. High voltage designs are necessary for the 'electrification' of hydraulically driven operations like actuation.
According to Boeing, the Asia-Pacific region will receive 8,595 aircraft deliveries during the 2022 - 2041 periods. About 76% of the delivered aircraft are expected to be single-aisle aircraft, and approximately 50% of aircraft will be delivered to airlines in China.
Due to global warming and market competition, the aircraft industry has been forced to address economic and environmental factors. This has led to an increase in the number of electric aeroplanes on the market. Aerial vehicles have required more power than ever in the preceding two decades. Numerous high-energy-density battery choices have evolved in response to developments in battery technology and materials. The aviation sector has made significant contributions to the environment, which is well-known and highly recognised. Because electric engines don't emit the same sorts of noise as jet or combustion engines, there is no aeroplane noise while utilising them which drives the market growth.
Limitations like battery leaks, internal short circuits in batteries that lead to failure, battery explosions from overcharging; excessive charging rates that cause fuming, and battery over discharge are significant roadblocks to the expansion of the global aerospace battery technology market. More money must be spent in order to tackle the issues brought on by the aforementioned battery restrictions, and the system also requires extensive maintenance, which raises maintenance expenses. The global market for aircraft battery technology is being constrained by these factors.
Many producers do research and development to provide dependable and secure batteries. In order to create various battery chemistries, battery makers have significantly increased their R&D efforts as the globe transitions to sustainable energy. For instance, industry leaders Amprius Inc. (US) and Nexeon Corporation (UK) are working to improve silicon anode batteries. In the upcoming years, a variety of sectors and industries are anticipated to embrace these cutting-edge silicon anode batteries.
Hazardous compounds found in used batteries include acids and heavy metals like mercury and lead. According to a report from the Environmental Protection Agency, lithium metal or lithium-ion batteries have been the cause of 254 fire occurrences at 64 water facilities. Spent batteries must be stored away from other flammable and combustible items in waterproof containers. A Class D extinguisher and sand should also be kept nearby as a safety precaution in case of a fire.
The worldwide aviation industry has been badly damaged by the COVID-19 outbreak. Passenger traffic in the commercial sector drastically decreased. However, around 2022, the aviation sector began to recover and is now steadily recovering to its pre-COVID-19 level. The worldwide air passenger traffic has increased in 2022 compared to 2021, according to the most recent data from IATA, ICAO, and Airports Council worldwide (ACI), the UN World Tourism Organisation (UNWTO), the World Trade Organisation (WTO), and the International Monetary Fund (IMF). Due to the transition to more electric design, including a number of aircraft electrical systems, high energy storage capacity and lifespan are required by aircraft, which creates further chances for growth and innovation in aviation batteries.
The lithium-ion battery segment is estimated to have a lucrative growth, due to the transition to all-electric aircraft. Comparing lithium-ion batteries to nickel-cadmium (also spelt NiCad, NiCd, or Ni-Cd) batteries, Li-ion batteries are smaller, require less maintenance, and are safer for the environment. As a result, compared to other battery types, the use of lithium-ion batteries and rising demand for nickel-cadmium batteries that are compatible with lithium-ion batteries.
The electric aircraft segment is anticipated to witness the highest CAGR growth during the forecast period, due to increased efficiency; electric aeroplanes substitute electrical controls for hydraulic ones. One of the major advantages of the creation and application of MEA is the reduction of fuel consumption, emissions, and aeroplane noise. To cut the fuel consumption of the aeroplane, manufacturers are also developing lightweight battery solutions. A product with a high energy-to-weight and energy-to-density ratio and excellent safety during the service life is required by the present specification for aeroplane batteries. New aeroplane technologies are being developed in response to climate change. They have a lot of promise for influencing an air travel future free from pollution.
Asia Pacific is projected to hold the largest market share during the forecast period owing to the airlines' aggressive purchases of commercial aircraft as a result of the region's improving passenger traffic. As part of fleet growth and modernisation initiatives, airlines in China, India, Japan, and South Korea have sizable order books for narrow-body and wide-body aircraft from aircraft OEMs. In addition, the region's rising military expenditures as a result of the ongoing geopolitical tensions between the nations are anticipated to drive the armed forces' investment in the acquisition of new-generation military aircraft to improve their aerial capabilities.
Europe is projected to have the highest CAGR over the forecast period, owing due to the increasing usage of UAVs in military missions and operations for intelligence collection, Europe holds the second-largest market share for aircraft batteries. Additionally, the UK aircraft battery market had the quickest rate of growth in the European area, while the German aircraft battery market had the biggest market share. Leading industry companies are making significant investments in R&D to diversify their product offerings, which will drive the aeroplane battery market's expansion.
Some of the key players profiled in the Aerospace Battery Technology Market include Tesla, GS Yuasa Corporation, Kokam, Mid-Continent Instrument Co., Inc., Meggitt PLC, ENERSYS, EaglePicher Technologies, HBL Power Systems Ltd, Concorde Battery Corporation, Teledyne Technologies Incorporated, Saft Groupe SAS, Sichuan Changhong Battery Co. Ltd, Cella Energy, Hitachi Ltd., LG Chem, Panasonic Holdings Corporation, Contemporary Amperex Technology Co., Ltd and Samsung SDI Co. Ltd
In May 2023, Honda Motor Co., Ltd. (Honda) and GS Yuasa International Ltd. (GS Yuasa), have announced that they have entered a joint venture agreement to form a new business.
In June 2022, Contemporary Amperex Technology Co., Ltd. has launched its new cell-to-pack battery Qilin, with record-breaking volume utilization efficiency of 72% and energy density of up to 255 Wh/Kg. This is the highest achievable integration level around the globe.
In October 2021, LG Energy Solution, a subsidiary operated by LG Chem, entered a memorandum of understanding with Stellantis N.V. to form a joint venture to produce battery cells and modules for North America.