PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1250705
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1250705
According to Stratistics MRC, the Global Mobile Edge Computing Market is accounted for $2.76 billion in 2022 and is expected to reach $26.10 billion by 2028 growing at a CAGR of 45.4% during the forecast period. Mobile edge computing is a network architecture that provides IT and cloud computing capabilities at the cellular network's edge. It is a new alternative for network providers who are struggling to meet consumer requests for expanded coverage and increased bandwidth. It is primarily used to alleviate network congestion and improve apps by bringing associated processing jobs closer to the end user. The technology is intended to be applied in cellular base stations, allowing for the rapid deployment of applications and other client services. The fundamental benefit of MEC is that it reduces congestion on mobile networks by bringing data closer to the end user and streaming it straight to their phones.
According to Infosys, 56% of the energy and utility companies are defining use cases for 5G, and 20% have already established their 5G service portfolios along with the ecosystem partners.
Rising application of 5g and industrial IOT services among end-user industries
Industry 4.0 is opening up new and exciting opportunities for the deployment of MEC platforms, which are present in the transition from legacy systems to smart components and machines, supporting digital factories, and generating an ecosystem of connected plants and organisations. 5G services are projected to boost IoT in industrial automation the most. The functionality to enable this section is currently being defined in 3GPP, driven by Industrial 4.0 projects and industry groups such as 5G-ACIA. It will be a 5G-specific segment for local area applications and private network deployments. 5G service adoption is increasing in the healthcare industry. Energy and utility firms are leading the way in actively improving 5G business cases, services, and partnerships.
Lack of a common security framework
MEC is vulnerable to the myriad threats and pieces of hardware that lurk in the shadows because to the lack of a security framework. This is true of any network technology or architecture. A wide range of dangers and hazards are possible in the MEC network. The most prevalent attacks that stymie market expansion, however, may be reduced down to compromised protocols, faked information and logs, loss of policy enforcement, man-in-the-middle, and data loss.
Expanding need among businesses to deliver quality of experience
As the number of connected devices grows, so does the amount of mobile data, driving up demand for telecom and network services. MNOs are constantly under pressure to provide high-quality services to consumers since demand for mobile data, particularly mobile video services, is increasing rapidly. Because of the MEC network design, an operator can provide new services at the edge of mobile networks. Operators leverage cutting-edge technology such as Network Functions Virtualization (NFV), virtualized RAN (vRAN), and SDN to offer new types of context-aware and value-added services. Application vendors, MNOs, and infrastructure providers are developing innovative apps to take advantage of RAN capabilities.
High deployment cost
Because sophisticated cyber-attacks are becoming more common, edge computing requires continual update and monitoring, despite the fact that it is generally safe. Individual MEC nodes and 5G vital services could be the target of fatal Distributed Denial-of-Service (Ddos) attacks that go undetected in a centralised data centre. Also, there is a scarcity of competent personnel to manage the increasingly sophisticated technologies. The market's expansion may be limited by a lack of infrastructure and deployment competence.
COVID-19 will have a significant impact on the market for mobile edge computing. Furthermore, the risk of a broad economic slowdown in response to the pandemic might significantly reduce IT budgets in the following months, reducing the potential client base for new 5G technologies. However, due to the spread of COVID-19, growth in 5G smartphone sales and network deployment is expected to decrease, thus impeding the growth of the mobile edge computing market. Furthermore, as a result of COVID, several nations are delaying 5G deployment, which would have a direct impact on the growth of the mobile edge computing market.
The hardware segment is expected to be the largest during the forecast period
The hardware segment is estimated to have a lucrative growth. The mobile edge computing infrastructure being recognized as a niche latency-sensitive application in the AR domain is expected to gain traction and generate market demand for hardware solutions. These infrastructure resources empower the AR system by maximizing throughput by leveraging the intelligence to the edge hardware rather than relying on the core network and thereby offloading computation-intensive tasks. Additionally, the growing investment for 5G deployments across the telecommunication industry for improving the quality of service is one of the key factors fuelling investments in mobile edge computing hardware, including edge gateways and hyper-converged infrastructure.
The location-based services segment is expected to have the highest CAGR during the forecast period
The location-based services segment is anticipated to witness the fastest CAGR growth during the forecast period, because of the introduction of new technologies and enhanced data transfer via 5G and cloud computing. The location-based service sends location-based data to the mobile edge platform or authorised applications. Active device location monitoring and location-based service recommendation are performed by the mobile edge platform or applications using location-related information. Bridge Alliance will collaborate with TM Forum in October 2021 to improve the capabilities of Bridge Alliance member operators in location-based services.
Asia Pacific is projected to hold the largest market share during the forecast period because of rising investments in telecommunications sectors, government measures to support digitalization, substantial investments in IoT & cloud technologies, and high penetration of smart devices in emerging economies such as India and China. China Mobile plans to construct cloud infrastructure around the country, including "a big number" of edge computing nodes. China's 5G rollout is fuelling growth in developing high-tech industries such as mobile edge computing, which processes data closer to devices in real-time than a cloud processor thousands of kilometres away.
North America is projected to have the highest CAGR over the forecast period. North America is home to three major cloud service providers: Microsoft Azure, Amazon Web Services, and Google Cloud. This region is also regarded as the epicentre of all key technical advances, including 5G, autonomous driving, IoT, blockchain, gaming, and artificial intelligence. This region of the world is well-known for being among the first to accept newly emerging technologies. Many developing technologies are currently strongly reliant on data. With the development of new technologies, edge computing is expected to have a significant impact.
Some of the key players profiled in the Mobile Edge Computing Market include Comsovereign Holding Corp, Nokia Corporation, AT&T Inc, Huawei Technologies Co. Ltd, Saguna Networks Ltd., Vapor IO, Inc., Vasona Networks, Inc., Brocade Communications Systems Inc., Juniper Networks Inc., Advantech Co., Ltd., Intel Corporation, Renesas Electronics Corporation, Emerson Electric co., GigaSpaces Technologies, Inc., Corning, Inc. and ZephyrTel.
In October 2022, AT&T announced the launch of a Dozen 5G "Edge Zones" across the United States by the end of the year to enable the next generation of network services. These edge zones powered by regional 5G standalone network cores will open up a range of new capabilities that simply aren't possible with 4G. This will be similar to startups that played an integral role in developing new experiences and services because of 4G.
In August 2022, Nokia announced the successful testing of a 600Gbit/s line rate on Telekom Serbia and MTEL's optical transport network over a distance of 600km between Banja Luka and Belgrade. The test utilized the Nokia 1830 Photonic Service Switch (PSS), powered by its PSE-Vs chipset, and laid the foundation for future growth to meet the needs of low latency and high-capacity traffic demands enabling the transport of 100GE and 400GE services.
In August 2022, Nokia revealed that Orange Egypt has chosen to upgrade its existing Nokia SDM system to accommodate subscriber growth over the next five years. The additions to the SDM network consist of a comprehensive modernization of the solution with improved hardware and continuing software updates. The new system will provide Orange Egypt's customers with enhanced dependability and security and the potential to increase operational efficiency and fulfill its subscribers' changing capacity and service requirements.
Components Covered:
Organization Sizes Covered:
Applications Covered:
Regions Covered:
All the customers of this report will be entitled to receive one of the following free customization options: