Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1218876

Cover Image

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1218876

Carbon Fiber Market Forecasts to 2028 - Global Analysis By Type, Form, Raw Material, Tow, End User and Geography

PUBLISHED:
PAGES: 175+ Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
PDF (Single User License)
USD 4150
PDF (2-5 User License)
USD 5250
PDF & Excel (Site License)
USD 6350
PDF & Excel (Global Site License)
USD 7500

Add to Cart

According to Stratistics MRC, the Global Carbon Fiber Market is accounted for $2.72 billion in 2022 and is expected to reach $4.51 billion by 2028 growing at a CAGR of 8.8% during the forecast period. Carbon fibre is one of the most corrosion- and heat-resistant materials because of its high strength, low weight, high stiffness, and electrical conductivity. The market is expanding as a result of rising demand for lightweight products from the aerospace and defence, automotive, and wind energy industries as well as efforts to reduce carbon emissions. However, the market expansion in the emerging nation is also being driven by the expanding building and construction industry. As concrete, steel, wood, and masonry are typically strengthened and reinforced with carbon fibre. Additionally, the consumer electronics industry's growing use of carbon fibre composites to make its products lighter, thinner, and more textured is predicted to fuel market expansion.

According to International Health, Racquet & Sports club Association (IHRSA) report released in 2019, the global fitness industry total revenue was $94 billion in 2018.

Market Dynamics:

Driver:

Increasing use of carbon fiber in Sports & Fitness Industry

Carbon fibres are frequently employed in the production of sporting goods because of their great strength and low weight. Carbon fibre is used to make a variety of sports equipment, including tennis racquets, oars, pickle ball paddles, archery, hockey sticks, fishing rods, baseball bats, and bicycles. When creating extremely specialised applications, carbon fibres offer design flexibility. Equipment's precise shape is essential to its performance and is easily achievable with carbon fibre composites. Golfers and cyclists benefit from the improved performance of carbon fibre. The tennis racket is where carbon fibre is used in sports equipment most specifically. Therefore, the aforementioned elements are fueling the market for carbon fibre in a variety of athletic goods.

Restraint:

High Cost of Products

Due to its high performance and lightweight characteristics, carbon composites are frequently utilised in the wind energy, oil & gas, construction, aerospace, and automotive industries. However, the product is more expensive than metal. A significant barrier preventing the widespread use of carbon composites in many industries is the product's price. The yield and price of the precursor used to make CF have a direct impact on its price. Currently, PAN-based carbon fibres have a conversion efficiency of just 50% and cost an average of USD 21.5 per kg for non-aerospace grade materials.

Opportunity:

Increase in demand from Clean Energy Sector

The market for carbon fibre is significantly influenced by the wind energy industry. The world is now acknowledging the creation of energy from renewable resources due to the depletion of fossil fuels. Turbine blades are frequently made of carbon fibre, which results in more aerodynamically efficient, lighter, longer, stiffer, and generally more efficient wind turbines that have lower Levelized Cost of Energy (LCOE). The utilisation of carbon fibre will rise as a result of developments in the wind energy field. An increase in wind energy investment is beneficial for the market's expansion because the global government is putting more emphasis on environmental issues.

Threat:

Availability of substitutes

The high price of carbon fibre is a significant issue with the expansion of the market. Due to their high price, these composites are not widely used, and for the manufacturer, finding low-cost technologies is their biggest issue. Only luxurious and expensive cars in the automotive industry use carbon fibre composites. Furthermore, the development of the market is seriously hindered by alternative composites of carbon fibres made of glass fibre, aluminium, copper, basalt fibre, and natural fibre. Since these alternatives are reliable & economical and have comparable end-use applications.

COVID-19 Impact

The development of the carbon fibre sector has been hampered by the COVID-19 epidemic. Construction, aerospace, and other industries, among others, have all experienced disruptions in output. Lockdowns and restrictions, particularly in 2020, had a negative impact on supply chain and operational management. In most regions of the world, the development and marketing of automobiles had abruptly stopped. Due to COVID-19, the aerospace and defence sector, a significant end-user of the product, suffered greatly in 2020. Since there is less demand for commodities, producers in important industries need fewer carbon fibres.

The pan-based segment is expected to be the largest during the forecast period

The pan-based segment is estimated to have a lucrative growth, due to The PAN-based component has a number of advantages, including low density, high strength, high modulus, high temperature resistance, wear resistance, corrosion resistance, fatigue resistance, creepage resistance, electric conduction, heat conduction, and far-infrared radiation resistance. These characteristics of PAN make it appropriate for usage in a variety of end-use industries, including the aerospace and aviation, automotive, wind energy, anti-flame clothing & materials, and sports equipment. As a result, the expansion of these end-use sectors contributes to market expansion.

The wind turbines segment is expected to have the highest CAGR during the forecast period

The wind turbines segment is anticipated to witness the fastest CAGR growth during the forecast period. Carbon fibres are employed in both onshore and offshore structures as a structural spar or component of blades longer than 45 metres. Carbon fiber's lower density and rigidity enable blade makers to create slimmer, lighter, and stiffer blade profiles. The demand for carbon fibre in the wind energy sector is anticipated to be driven by an increase in offshore wind power installations together with a growing demand for longer blades and larger wind turbines. Together, automotive and wind turbines account for more than half of the demand for carbon fibre, making them two additional significant applications.

Region with highest share:

North America is projected to hold the largest market share during the forecast period owing to the area is distinguished by a dense concentration of important defence instrument manufacturers and major aircraft manufacturers like Airbus. North American auto industry behemoths place a strong emphasis on producing lightweight, high-performance vehicles, thus boosting the market in the region.

Region with highest CAGR:

Europe is projected to have the highest CAGR over the forecast period, owing to the automobile, aerospace, defence, and wind energy industries are well-established. Companies like BMW, Mercedes, Fiat, and Ferrari, among others, are putting an emphasis on creating lightweight, fuel-efficient, low-emission vehicles, which will directly increase the usage of carbon fibre. Due to increased disposable income and globalisation, there is a rising need for commercial aviation, which in turn is driving up demand for aerospace. In Europe, particularly in the United Kingdom and Germany, there are numerous offshore wind energy facilities.

Key players in the market

Some of the key players profiled in the Carbon Fiber Market include Hyosung Advanced Materials, Hexcel Corporation, SGL Carbon, Nippon Steel Chemical & Material Co., Ltd., Mitsubishi Chemical Carbon Fiber and Composites, Inc., Toray Industries Inc., Formosa Plastics Corp, Teijin Carbon, Cytec Solvay Group, DowAksa, Nippon Graphite Fiber Corporation, Solvay, Carbon Mods, Taekwang Industrial Co., Ltd and Toho Tenax.

Key Developments:

In July 2022, Hexcel signed a long-term agreement with Dassault to supply carbon fiber prepreg for the Falcon 10X program. This is the first Dassault business jet program to incorporate high-performance advanced carbon fiber composites in manufacturing its aircraft wings.

In April 2022, Hexcel and Archer Aviation Inc. entered into a letter of intent covering a proposed relationship for supplying high-performance carbon fiber material that would be used to manufacture Archer's production aircraft.

In February 2022, Teijin Limited announced to form a partnership with the Japan-based recycled carbon fibers manufacturer Fuji Design Co. Ltd to establish a business for producing, supplying, and commercializing carbon fiber reinforced plastic products derived from recycled carbon fibers using carbon fiber with a low environmental impact process.

In August 2020, Hexcel Corp. announced the launch of HexPEKK material, an electrically conductive, high-performance, PEKK-based thermoplastic carbon fiber composite, which is ideal for 3D-priting components for commercial aerospace, and Defense. This new launch will further expand Hexcel offering, and will drive the carbon fiber markets growth.

Types Covered:

  • Short Carbon Fiber
  • Long Carbon Fiber
  • Continuous Carbon Fiber
  • Virgin carbon fiber
  • Recycled carbon fiber
  • Other Types

Forms Covered:

  • Non-Composite Carbon Fiber
  • Composite Carbon Fiber
  • Woven Fabric
  • Molding Compound
  • Other Forms

Raw Materials Covered:

  • Pitch-Based
  • Rayon-Based
  • Pan-Based
  • Other Raw Materials

Tows Covered:

  • Small Tow
  • Large Tow

End Users Covered:

  • Moulding and Compounds
  • Aerospace and Defence
  • Automotive
  • Sports/Leisure
  • Wind Turbines
  • Building & Construction
  • Pultrusion Misc.
  • Healthcare
  • Electric & Electronic
  • Civil Engineering
  • Pressure Vessels
  • Misc. Consumer
  • Marine
  • Sailing/Yacht Building
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2020, 2021, 2022, 2025, and 2028
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances
Product Code: SMRC22412

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Carbon Fiber Market, By Type

  • 5.1 Introduction
  • 5.2 Short Carbon Fiber
  • 5.3 Long Carbon Fiber
  • 5.4 Continuous Carbon Fiber
  • 5.5 Virgin carbon fiber
  • 5.6 Recycled carbon fiber
  • 5.7 Other Types

6 Global Carbon Fiber Market, By Form

  • 6.1 Introduction
  • 6.2 Non-Composite Carbon Fiber
  • 6.3 Composite Carbon Fiber
  • 6.4 Woven Fabric
  • 6.5 Molding Compound
  • 6.6 Other Forms

7 Global Carbon Fiber Market, By Raw Material

  • 7.1 Introduction
  • 7.2 Pitch-Based
  • 7.3 Rayon-Based
  • 7.4 Pan-Based
  • 7.5 Other Raw Materials

8 Global Carbon Fiber Market, By Tow

  • 8.1 Introduction
  • 8.2 Small Tow
  • 8.3 Large Tow

9 Global Carbon Fiber Market, By End User

  • 9.1 Introduction
  • 9.2 Moulding and Compounds
  • 9.3 Aerospace and Defence
    • 9.3.1 Fighter Jets
    • 9.3.2 Armored Vehicles
    • 9.3.3 Commercial Jets
    • 9.3.4 Rotorcraft
    • 9.3.5 Satellites
  • 9.4 Automotive
    • 9.4.1 Interior
    • 9.4.2 Exterior
  • 9.5 Sports/Leisure
    • 9.5.1 Tennis Rackets
    • 9.5.2 Golf Club
    • 9.5.3 Hockey Sticks
    • 9.5.4 Archery
  • 9.6 Wind Turbines
  • 9.7 Building & Construction
  • 9.8 Pultrusion Misc.
  • 9.9 Healthcare
  • 9.10 Electric & Electronic
  • 9.11 Civil Engineering
  • 9.12 Pressure Vessels
  • 9.13 Misc. Consumer
  • 9.14 Marine
  • 9.15 Sailing/Yacht Building
  • 9.16 Other End Users

10 Global Carbon Fiber Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Hyosung Advanced Materials
  • 12.2 Hexcel Corporation
  • 12.3 SGL Carbon
  • 12.4 Nippon Steel Chemical & Material Co., Ltd.
  • 12.5 Mitsubishi Chemical Carbon Fiber and Composites, Inc.
  • 12.6 Toray Industries Inc.
  • 12.7 Formosa Plastics Corp
  • 12.8 Teijin Carbon
  • 12.9 Cytec Solvay Group
  • 12.10 DowAksa
  • 12.11 Nippon Graphite Fiber Corporation
  • 12.12 Solvay
  • 12.13 Carbon Mods
  • 12.14 Taekwang Industrial Co., Ltd
  • 12.15 Toho Tenax
Product Code: SMRC22412

List of Tables

  • 1 Global Carbon Fiber Market Outlook, By Region (2020-2028) ($MN)
  • 2 Global Carbon Fiber Market Outlook, By Type (2020-2028) ($MN)
  • 3 Global Carbon Fiber Market Outlook, By Short Carbon Fiber (2020-2028) ($MN)
  • 4 Global Carbon Fiber Market Outlook, By Long Carbon Fiber (2020-2028) ($MN)
  • 5 Global Carbon Fiber Market Outlook, By Continuous Carbon Fiber (2020-2028) ($MN)
  • 6 Global Carbon Fiber Market Outlook, By Virgin carbon fiber (2020-2028) ($MN)
  • 7 Global Carbon Fiber Market Outlook, By Recycled carbon fiber (2020-2028) ($MN)
  • 8 Global Carbon Fiber Market Outlook, By Other Types (2020-2028) ($MN)
  • 9 Global Carbon Fiber Market Outlook, By Form (2020-2028) ($MN)
  • 10 Global Carbon Fiber Market Outlook, By Non-Composite Carbon Fiber (2020-2028) ($MN)
  • 11 Global Carbon Fiber Market Outlook, By Composite Carbon Fiber (2020-2028) ($MN)
  • 12 Global Carbon Fiber Market Outlook, By Woven Fabric (2020-2028) ($MN)
  • 13 Global Carbon Fiber Market Outlook, By Molding Compound (2020-2028) ($MN)
  • 14 Global Carbon Fiber Market Outlook, By Other Forms (2020-2028) ($MN)
  • 15 Global Carbon Fiber Market Outlook, By Raw Material (2020-2028) ($MN)
  • 16 Global Carbon Fiber Market Outlook, By Pitch-Based (2020-2028) ($MN)
  • 17 Global Carbon Fiber Market Outlook, By Rayon-Based (2020-2028) ($MN)
  • 18 Global Carbon Fiber Market Outlook, By Pan-Based (2020-2028) ($MN)
  • 19 Global Carbon Fiber Market Outlook, By Other Raw Materials (2020-2028) ($MN)
  • 20 Global Carbon Fiber Market Outlook, By Tow (2020-2028) ($MN)
  • 21 Global Carbon Fiber Market Outlook, By Small Tow (2020-2028) ($MN)
  • 22 Global Carbon Fiber Market Outlook, By Large Tow (2020-2028) ($MN)
  • 23 Global Carbon Fiber Market Outlook, By End User (2020-2028) ($MN)
  • 24 Global Carbon Fiber Market Outlook, By Moulding and Compounds (2020-2028) ($MN)
  • 25 Global Carbon Fiber Market Outlook, By Aerospace and Defence (2020-2028) ($MN)
  • 26 Global Carbon Fiber Market Outlook, By Fighter Jets (2020-2028) ($MN)
  • 27 Global Carbon Fiber Market Outlook, By Armored Vehicles (2020-2028) ($MN)
  • 28 Global Carbon Fiber Market Outlook, By Commercial Jets (2020-2028) ($MN)
  • 29 Global Carbon Fiber Market Outlook, By Rotorcraft (2020-2028) ($MN)
  • 30 Global Carbon Fiber Market Outlook, By Satellites (2020-2028) ($MN)
  • 31 Global Carbon Fiber Market Outlook, By Automotive (2020-2028) ($MN)
  • 32 Global Carbon Fiber Market Outlook, By Interior (2020-2028) ($MN)
  • 33 Global Carbon Fiber Market Outlook, By Exterior (2020-2028) ($MN)
  • 34 Global Carbon Fiber Market Outlook, By Sports/Leisure (2020-2028) ($MN)
  • 35 Global Carbon Fiber Market Outlook, By Tennis Rackets (2020-2028) ($MN)
  • 36 Global Carbon Fiber Market Outlook, By Golf Club (2020-2028) ($MN)
  • 37 Global Carbon Fiber Market Outlook, By Hockey Sticks (2020-2028) ($MN)
  • 38 Global Carbon Fiber Market Outlook, By Archery (2020-2028) ($MN)
  • 39 Global Carbon Fiber Market Outlook, By Wind Turbines (2020-2028) ($MN)
  • 40 Global Carbon Fiber Market Outlook, By Building & Construction (2020-2028) ($MN)
  • 41 Global Carbon Fiber Market Outlook, By Pultrusion Misc. (2020-2028) ($MN)
  • 42 Global Carbon Fiber Market Outlook, By Healthcare (2020-2028) ($MN)
  • 43 Global Carbon Fiber Market Outlook, By Electric & Electronic (2020-2028) ($MN)
  • 44 Global Carbon Fiber Market Outlook, By Civil Engineering (2020-2028) ($MN)
  • 45 Global Carbon Fiber Market Outlook, By Pressure Vessels (2020-2028) ($MN)
  • 46 Global Carbon Fiber Market Outlook, By Misc. Consumer (2020-2028) ($MN)
  • 47 Global Carbon Fiber Market Outlook, By Marine (2020-2028) ($MN)
  • 48 Global Carbon Fiber Market Outlook, By Sailing/Yacht Building (2020-2028) ($MN)
  • 49 Global Carbon Fiber Market Outlook, By Other End Users (2020-2028) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!