Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Persistence Market Research | PRODUCT CODE: 1525951

Cover Image

PUBLISHER: Persistence Market Research | PRODUCT CODE: 1525951

Spectroscopy IR Detector Market: Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2024-2033

PUBLISHED:
PAGES: 310 Pages
DELIVERY TIME: 2-5 business days
SELECT AN OPTION
Unprintable PDF & Excel (Single User License)
USD 4995
PDF & Excel (Multi User License)
USD 7295
PDF & Excel (Corporate User License)
USD 8495

Add to Cart

Persistence Market Research has recently released a comprehensive report on the worldwide market for Spectroscopy IR Detectors. The report offers a thorough assessment of crucial market dynamics, including drivers, trends, opportunities, and challenges, providing detailed insights into the market structure.

Key Insights:

  • Spectroscopy IR Detector Market Size (2024E): USD 237.8 Million
  • Projected Market Value (2033F): USD 399 Million
  • Global Market Growth Rate (CAGR 2024 to 2033): 5.9%

Spectroscopy IR Detector Market - Report Scope:

Spectroscopy IR detectors are critical components in various scientific and industrial applications, including chemical analysis, environmental monitoring, and medical diagnostics. These detectors capture and measure infrared radiation to identify and quantify different substances. The Spectroscopy IR Detector market caters to sectors such as pharmaceuticals, environmental science, food and beverage, and healthcare, offering a range of detector types, including thermal detectors, photon detectors, and quantum detectors. Market growth is driven by the increasing adoption of spectroscopy techniques for precise and non-invasive analysis, advancements in detector technology, and rising investments in research and development across multiple industries.

Market Growth Drivers:

The global Spectroscopy IR Detector market is propelled by several key factors, including the growing demand for accurate and efficient chemical analysis in pharmaceuticals and environmental monitoring. The rising focus on food safety and quality control also drives market expansion. Technological advancements, such as the development of miniaturized and highly sensitive IR detectors, enhance analytical capabilities and broaden application areas. Moreover, increasing government regulations on environmental protection and stringent quality standards in the food and pharmaceutical industries further stimulate market growth.

Market Restraints:

Despite promising growth prospects, the Spectroscopy IR Detector market faces challenges related to high costs and technical complexities associated with advanced detector technologies. The need for skilled personnel to operate and maintain these sophisticated instruments can limit market penetration, particularly in emerging economies. Additionally, economic constraints and budget limitations in certain industries may hinder the widespread adoption of spectroscopy IR detectors. Addressing these barriers requires continuous innovation, cost-effective solutions, and comprehensive training programs to facilitate broader market access and utilization.

Market Opportunities:

The Spectroscopy IR Detector market presents significant growth opportunities driven by technological innovations, expanding application areas, and evolving industry standards. The integration of artificial intelligence and machine learning with spectroscopy technologies enhances data analysis and interpretation, providing deeper insights and faster decision-making. Furthermore, the growing emphasis on green and sustainable practices in various industries, including chemical and environmental sectors, creates new avenues for the application of spectroscopy IR detectors. Strategic partnerships, investment in research and development, and the introduction of user-friendly, portable, and affordable spectroscopy solutions are essential to capitalize on emerging opportunities and sustain market leadership.

Key Questions Answered in the Report:

  • What are the primary factors driving the growth of the Spectroscopy IR Detector market globally?
  • Which detector types and applications are driving spectroscopy adoption across different sectors?
  • How are technological advancements reshaping the competitive landscape of the Spectroscopy IR Detector market?
  • Who are the key players contributing to the Spectroscopy IR Detector market, and what strategies are they employing to maintain market relevance?
  • What are the emerging trends and future prospects in the global Spectroscopy IR Detector market?

Competitive Intelligence and Business Strategy:

Leading players in the global Spectroscopy IR Detector market, including Hamamatsu Photonics, FLIR Systems, and Teledyne DALSA, focus on innovation, product differentiation, and strategic partnerships to gain a competitive edge. These companies invest in R&D to develop advanced spectroscopy solutions, including portable and handheld detectors, catering to diverse analytical needs and industry requirements. Collaborations with research institutions, environmental agencies, and industrial partners facilitate market access and promote technology adoption. Moreover, emphasis on quality assurance, regulatory compliance, and customer education fosters market growth and enhances operational efficiency in the rapidly evolving spectroscopy landscape.

Key Companies Profiled:

  • Allied Vision Technologies
  • BaySpec, Inc.
  • Episensors Inc.
  • Flir Systems Inc.
  • Hamamatsu Photonics K.K.
  • Horiba Ltd.
  • Newport Corporation
  • Sensors Unlimited
  • Lynred
  • Teledyne Dalsa Inc
  • Laser Components GmbH
  • Excelitas Technologies Corp.

Spectroscopy IR Detectors Market Outlook by Category

By Spectrum Sensitivity

  • NIR
  • Mid IR
  • Far IR

By Detector Technology

  • Mercury Cadmium Telluride
  • Deuterated Triglycine Sulfate
  • Indium Gallium Arsenide

By Cooling Requirement

  • Cooled
  • Uncooled

By Product Type

  • Benchtop Spectroscopes
  • Micro Spectroscopes
  • Portable Spectroscopes
  • Hyphenated Spectroscopes

By Region

  • North America
  • Latin America
  • Europe
  • Asia Pacific
  • Middle East and Africa
Product Code: PMRREP33506

Table of Contents

1. Executive Summary

  • 1.1. Global Market Outlook
  • 1.2. Demand-side Trends
  • 1.3. Supply-side Trends
  • 1.4. Technology Roadmap Analysis
  • 1.5. Analysis and Recommendations

2. Market Overview

  • 2.1. Market Coverage / Taxonomy
  • 2.2. Market Definition / Scope / Limitations

3. Market Background

  • 3.1. Market Dynamics
    • 3.1.1. Drivers
    • 3.1.2. Restraints
    • 3.1.3. Opportunity
    • 3.1.4. Trends
  • 3.2. Scenario Forecast
    • 3.2.1. Demand in Optimistic Scenario
    • 3.2.2. Demand in Likely Scenario
    • 3.2.3. Demand in Conservative Scenario
  • 3.3. Opportunity Map Analysis
  • 3.4. Product Life Cycle Analysis
  • 3.5. Supply Chain Analysis
    • 3.5.1. Supply Side Participants and their Roles
      • 3.5.1.1. Producers
      • 3.5.1.2. Mid-Level Participants (Traders/ Agents/ Brokers)
      • 3.5.1.3. Wholesalers and Distributors
    • 3.5.2. Value Added and Value Created at Node in the Supply Chain
    • 3.5.3. List of Raw Material Suppliers
    • 3.5.4. List of Existing and Potential Buyer's
  • 3.6. Investment Feasibility Matrix
  • 3.7. Value Chain Analysis
    • 3.7.1. Profit Margin Analysis
    • 3.7.2. Wholesalers and Distributors
    • 3.7.3. Retailers
  • 3.8. PESTLE and Porter's Analysis
  • 3.9. Regulatory Landscape
    • 3.9.1. By Key Regions
    • 3.9.2. By Key Countries
  • 3.10. Regional Parent Market Outlook
  • 3.11. Production and Consumption Statistics
  • 3.12. Import and Export Statistics

4. Global Spectroscopy IR Detector Market Analysis 2019-2023 and Forecast, 2024-2033

  • 4.1. Historical Market Size Value (US$ Mn) & Volume (Units) Analysis, 2019-2023
  • 4.2. Current and Future Market Size Value (US$ Mn) & Volume (Units) Projections, 2024-2033
    • 4.2.1. Y-o-Y Growth Trend Analysis
    • 4.2.2. Absolute $ Opportunity Analysis

5. Global Spectroscopy IR Detector Market Analysis 2019-2023 and Forecast 2024-2033, By Spectrum Sensitivity

  • 5.1. Introduction / Key Findings
  • 5.2. Historical Market Size Value (US$ Mn) & Volume (Units) Analysis By Spectrum Sensitivity, 2019-2023
  • 5.3. Current and Future Market Size Value (US$ Mn) & Volume (Units) Analysis and Forecast By Spectrum Sensitivity, 2024-2033
    • 5.3.1. NIR
    • 5.3.2. Mid IR
    • 5.3.3. Far IR
  • 5.4. Y-o-Y Growth Trend Analysis By Spectrum Sensitivity, 2019-2023
  • 5.5. Absolute $ Opportunity Analysis By Spectrum Sensitivity, 2024-2033

6. Global Spectroscopy IR Detector Market Analysis 2019-2023 and Forecast 2024-2033, By Detector Technology

  • 6.1. Introduction / Key Findings
  • 6.2. Historical Market Size Value (US$ Mn) & Volume (Units) Analysis By Detector Technology, 2019-2023
  • 6.3. Current and Future Market Size Value (US$ Mn) & Volume (Units) Analysis and Forecast By Detector Technology, 2024-2033
    • 6.3.1. Mercury Cadmium Telluride
    • 6.3.2. Deuterated Triglycine Sulfate
    • 6.3.3. Indium Gallium Arsenide
    • 6.3.4. Others
  • 6.4. Y-o-Y Growth Trend Analysis By Detector Technology, 2019-2023
  • 6.5. Absolute $ Opportunity Analysis By Detector Technology, 2024-2033

7. Global Spectroscopy IR Detector Market Analysis 2019-2023 and Forecast 2024-2033, By Cooling Requirement

  • 7.1. Introduction / Key Findings
  • 7.2. Historical Market Size Value (US$ Mn) & Volume (Units) Analysis By Cooling Requirement, 2019-2023
  • 7.3. Current and Future Market Size Value (US$ Mn) & Volume (Units) Analysis and Forecast By Cooling Requirement, 2024-2033
    • 7.3.1. Cooled
    • 7.3.2. Uncooled
  • 7.4. Y-o-Y Growth Trend Analysis By Cooling Requirement, 2019-2023
  • 7.5. Absolute $ Opportunity Analysis By Cooling Requirement, 2024-2033

8. Global Spectroscopy IR Detector Market Analysis 2019-2023 and Forecast 2024-2033, By Product Type

  • 8.1. Introduction / Key Findings
  • 8.2. Historical Market Size Value (US$ Mn) & Volume (Units) Analysis By Product Type, 2019-2023
  • 8.3. Current and Future Market Size Value (US$ Mn) & Volume (Units) Analysis and Forecast By Product Type, 2024-2033
    • 8.3.1. Benchtop Spectroscopes
    • 8.3.2. Micro Spectroscopes
    • 8.3.3. Portable Spectroscopes
    • 8.3.4. Hyphenated Spectroscopes
  • 8.4. Y-o-Y Growth Trend Analysis By Product Type, 2019-2023
  • 8.5. Absolute $ Opportunity Analysis By Product Type, 2024-2033

9. Global Spectroscopy IR Detector Market Analysis 2019-2023 and Forecast 2024-2033, By Region

  • 9.1. Introduction
  • 9.2. Historical Market Size Value (US$ Mn) & Volume (Units) Analysis By Region, 2019-2023
  • 9.3. Current Market Size Value (US$ Mn) & Volume (Units) Analysis and Forecast By Region, 2024-2033
    • 9.3.1. North America
    • 9.3.2. Latin America
    • 9.3.3. Europe
    • 9.3.4. Asia Pacific
    • 9.3.5. MEA
  • 9.4. Market Attractiveness Analysis By Region

10. North America Spectroscopy IR Detector Market Analysis 2019-2023 and Forecast 2024-2033, By Country

  • 10.1. Historical Market Size Value (US$ Mn) & Volume (Units) Trend Analysis By Market Taxonomy, 2019-2023
  • 10.2. Market Size Value (US$ Mn) & Volume (Units) Forecast By Market Taxonomy, 2024-2033
    • 10.2.1. By Country
      • 10.2.1.1. U.S.
      • 10.2.1.2. Canada
    • 10.2.2. By Spectrum Sensitivity
    • 10.2.3. By Detector Technology
    • 10.2.4. By Cooling Requirement
    • 10.2.5. By Product Type
  • 10.3. Market Attractiveness Analysis
    • 10.3.1. By Country
    • 10.3.2. By Spectrum Sensitivity
    • 10.3.3. By Detector Technology
    • 10.3.4. By Cooling Requirement
    • 10.3.5. By Product Type
  • 10.4. Key Takeaways

11. Latin America Spectroscopy IR Detector Market Analysis 2019-2023 and Forecast 2024-2033, By Country

  • 11.1. Historical Market Size Value (US$ Mn) & Volume (Units) Trend Analysis By Market Taxonomy, 2019-2023
  • 11.2. Market Size Value (US$ Mn) & Volume (Units) Forecast By Market Taxonomy, 2024-2033
    • 11.2.1. By Country
      • 11.2.1.1. Brazil
      • 11.2.1.2. Mexico
      • 11.2.1.3. Rest of Latin America
    • 11.2.2. By Spectrum Sensitivity
    • 11.2.3. By Detector Technology
    • 11.2.4. By Cooling Requirement
    • 11.2.5. By Product Type
  • 11.3. Market Attractiveness Analysis
    • 11.3.1. By Country
    • 11.3.2. By Spectrum Sensitivity
    • 11.3.3. By Detector Technology
    • 11.3.4. By Cooling Requirement
    • 11.3.5. By Product Type
  • 11.4. Key Takeaways

12. Europe Spectroscopy IR Detector Market Analysis 2019-2023 and Forecast 2024-2033, By Country

  • 12.1. Historical Market Size Value (US$ Mn) & Volume (Units) Trend Analysis By Market Taxonomy, 2019-2023
  • 12.2. Market Size Value (US$ Mn) & Volume (Units) Forecast By Market Taxonomy, 2024-2033
    • 12.2.1. By Country
      • 12.2.1.1. Germany
      • 12.2.1.2. U.K.
      • 12.2.1.3. France
      • 12.2.1.4. Spain
      • 12.2.1.5. Italy
      • 12.2.1.6. Rest of Europe
    • 12.2.2. By Spectrum Sensitivity
    • 12.2.3. By Detector Technology
    • 12.2.4. By Cooling Requirement
    • 12.2.5. By Product Type
  • 12.3. Market Attractiveness Analysis
    • 12.3.1. By Country
    • 12.3.2. By Spectrum Sensitivity
    • 12.3.3. By Detector Technology
    • 12.3.4. By Cooling Requirement
    • 12.3.5. By Product Type
  • 12.4. Key Takeaways

13. Asia Pacific Spectroscopy IR Detector Market Analysis 2019-2023 and Forecast 2024-2033, By Country

  • 13.1. Historical Market Size Value (US$ Mn) & Volume (Units) Trend Analysis By Market Taxonomy, 2019-2023
  • 13.2. Market Size Value (US$ Mn) & Volume (Units) Forecast By Market Taxonomy, 2024-2033
    • 13.2.1. By Country
      • 13.2.1.1. China
      • 13.2.1.2. Japan
      • 13.2.1.3. South Korea
      • 13.2.1.4. Singapore
      • 13.2.1.5. Thailand
      • 13.2.1.6. Indonesia
      • 13.2.1.7. Australia
      • 13.2.1.8. New Zealand
      • 13.2.1.9. Rest of Asia Pacific
    • 13.2.2. By Spectrum Sensitivity
    • 13.2.3. By Detector Technology
    • 13.2.4. By Cooling Requirement
    • 13.2.5. By Product Type
  • 13.3. Market Attractiveness Analysis
    • 13.3.1. By Country
    • 13.3.2. By Spectrum Sensitivity
    • 13.3.3. By Detector Technology
    • 13.3.4. By Cooling Requirement
    • 13.3.5. By Product Type
  • 13.4. Key Takeaways

14. MEA Spectroscopy IR Detector Market Analysis 2019-2023 and Forecast 2024-2033, By Country

  • 14.1. Historical Market Size Value (US$ Mn) & Volume (Units) Trend Analysis By Market Taxonomy, 2019-2023
  • 14.2. Market Size Value (US$ Mn) & Volume (Units) Forecast By Market Taxonomy, 2024-2033
    • 14.2.1. By Country
      • 14.2.1.1. GCC Countries
      • 14.2.1.2. South Africa
      • 14.2.1.3. Israel
      • 14.2.1.4. Rest of MEA
    • 14.2.2. By Spectrum Sensitivity
    • 14.2.3. By Detector Technology
    • 14.2.4. By Cooling Requirement
    • 14.2.5. By Product Type
  • 14.3. Market Attractiveness Analysis
    • 14.3.1. By Country
    • 14.3.2. By Spectrum Sensitivity
    • 14.3.3. By Detector Technology
    • 14.3.4. By Cooling Requirement
    • 14.3.5. By Product Type
  • 14.4. Key Takeaways

15. Key Countries Spectroscopy IR Detector Market Analysis

  • 15.1. U.S.
    • 15.1.1. Pricing Analysis
    • 15.1.2. Market Share Analysis, 2024
      • 15.1.2.1. By Spectrum Sensitivity
      • 15.1.2.2. By Detector Technology
      • 15.1.2.3. By Cooling Requirement
      • 15.1.2.4. By Product Type
  • 15.2. Canada
    • 15.2.1. Pricing Analysis
    • 15.2.2. Market Share Analysis, 2024
      • 15.2.2.1. By Spectrum Sensitivity
      • 15.2.2.2. By Detector Technology
      • 15.2.2.3. By Cooling Requirement
      • 15.2.2.4. By Product Type
  • 15.3. Brazil
    • 15.3.1. Pricing Analysis
    • 15.3.2. Market Share Analysis, 2024
      • 15.3.2.1. By Spectrum Sensitivity
      • 15.3.2.2. By Detector Technology
      • 15.3.2.3. By Cooling Requirement
      • 15.3.2.4. By Product Type
  • 15.4. Mexico
    • 15.4.1. Pricing Analysis
    • 15.4.2. Market Share Analysis, 2024
      • 15.4.2.1. By Spectrum Sensitivity
      • 15.4.2.2. By Detector Technology
      • 15.4.2.3. By Cooling Requirement
      • 15.4.2.4. By Product Type
  • 15.5. Germany
    • 15.5.1. Pricing Analysis
    • 15.5.2. Market Share Analysis, 2024
      • 15.5.2.1. By Spectrum Sensitivity
      • 15.5.2.2. By Detector Technology
      • 15.5.2.3. By Cooling Requirement
      • 15.5.2.4. By Product Type
  • 15.6. U.K.
    • 15.6.1. Pricing Analysis
    • 15.6.2. Market Share Analysis, 2024
      • 15.6.2.1. By Spectrum Sensitivity
      • 15.6.2.2. By Detector Technology
      • 15.6.2.3. By Cooling Requirement
      • 15.6.2.4. By Product Type
  • 15.7. France
    • 15.7.1. Pricing Analysis
    • 15.7.2. Market Share Analysis, 2024
      • 15.7.2.1. By Spectrum Sensitivity
      • 15.7.2.2. By Detector Technology
      • 15.7.2.3. By Cooling Requirement
      • 15.7.2.4. By Product Type
  • 15.8. Spain
    • 15.8.1. Pricing Analysis
    • 15.8.2. Market Share Analysis, 2024
      • 15.8.2.1. By Spectrum Sensitivity
      • 15.8.2.2. By Detector Technology
      • 15.8.2.3. By Cooling Requirement
      • 15.8.2.4. By Product Type
  • 15.9. Italy
    • 15.9.1. Pricing Analysis
    • 15.9.2. Market Share Analysis, 2024
      • 15.9.2.1. By Spectrum Sensitivity
      • 15.9.2.2. By Detector Technology
      • 15.9.2.3. By Cooling Requirement
      • 15.9.2.4. By Product Type
  • 15.10. China
    • 15.10.1. Pricing Analysis
    • 15.10.2. Market Share Analysis, 2024
      • 15.10.2.1. By Spectrum Sensitivity
      • 15.10.2.2. By Detector Technology
      • 15.10.2.3. By Cooling Requirement
      • 15.10.2.4. By Product Type
  • 15.11. Japan
    • 15.11.1. Pricing Analysis
    • 15.11.2. Market Share Analysis, 2024
      • 15.11.2.1. By Spectrum Sensitivity
      • 15.11.2.2. By Detector Technology
      • 15.11.2.3. By Cooling Requirement
      • 15.11.2.4. By Product Type
  • 15.12. South Korea
    • 15.12.1. Pricing Analysis
    • 15.12.2. Market Share Analysis, 2024
      • 15.12.2.1. By Spectrum Sensitivity
      • 15.12.2.2. By Detector Technology
      • 15.12.2.3. By Cooling Requirement
      • 15.12.2.4. By Product Type
  • 15.13. Singapore
    • 15.13.1. Pricing Analysis
    • 15.13.2. Market Share Analysis, 2024
      • 15.13.2.1. By Spectrum Sensitivity
      • 15.13.2.2. By Detector Technology
      • 15.13.2.3. By Cooling Requirement
      • 15.13.2.4. By Product Type
  • 15.14. Thailand
    • 15.14.1. Pricing Analysis
    • 15.14.2. Market Share Analysis, 2024
      • 15.14.2.1. By Spectrum Sensitivity
      • 15.14.2.2. By Detector Technology
      • 15.14.2.3. By Cooling Requirement
      • 15.14.2.4. By Product Type
  • 15.15. Indonesia
    • 15.15.1. Pricing Analysis
    • 15.15.2. Market Share Analysis, 2024
      • 15.15.2.1. By Spectrum Sensitivity
      • 15.15.2.2. By Detector Technology
      • 15.15.2.3. By Cooling Requirement
      • 15.15.2.4. By Product Type
  • 15.16. Australia
    • 15.16.1. Pricing Analysis
    • 15.16.2. Market Share Analysis, 2024
      • 15.16.2.1. By Spectrum Sensitivity
      • 15.16.2.2. By Detector Technology
      • 15.16.2.3. By Cooling Requirement
      • 15.16.2.4. By Product Type
  • 15.17. New Zealand
    • 15.17.1. Pricing Analysis
    • 15.17.2. Market Share Analysis, 2024
      • 15.17.2.1. By Spectrum Sensitivity
      • 15.17.2.2. By Detector Technology
      • 15.17.2.3. By Cooling Requirement
      • 15.17.2.4. By Product Type
  • 15.18. GCC Countries
    • 15.18.1. Pricing Analysis
    • 15.18.2. Market Share Analysis, 2024
      • 15.18.2.1. By Spectrum Sensitivity
      • 15.18.2.2. By Detector Technology
      • 15.18.2.3. By Cooling Requirement
      • 15.18.2.4. By Product Type
  • 15.19. South Africa
    • 15.19.1. Pricing Analysis
    • 15.19.2. Market Share Analysis, 2024
      • 15.19.2.1. By Spectrum Sensitivity
      • 15.19.2.2. By Detector Technology
      • 15.19.2.3. By Cooling Requirement
      • 15.19.2.4. By Product Type
  • 15.20. Israel
    • 15.20.1. Pricing Analysis
    • 15.20.2. Market Share Analysis, 2024
      • 15.20.2.1. By Spectrum Sensitivity
      • 15.20.2.2. By Detector Technology
      • 15.20.2.3. By Cooling Requirement
      • 15.20.2.4. By Product Type

16. Market Structure Analysis

  • 16.1. Competition Dashboard
  • 16.2. Competition Benchmarking
  • 16.3. Market Share Analysis of Top Players
    • 16.3.1. By Regional
    • 16.3.2. By Spectrum Sensitivity
    • 16.3.3. By Detector Technology
    • 16.3.4. By Cooling Requirement
    • 16.3.5. By Product Type

17. Competition Analysis

  • 17.1. Competition Deep Dive
    • 17.1.1. Allied Vision Technologies
      • 17.1.1.1. Overview
      • 17.1.1.2. Product Portfolio
      • 17.1.1.3. Profitability by Market Segments
      • 17.1.1.4. Sales Footprint
      • 17.1.1.5. Strategy Overview
        • 17.1.1.5.1. Marketing Strategy
        • 17.1.1.5.2. Product Strategy
        • 17.1.1.5.3. Channel Strategy
    • 17.1.2. BaySpec, Inc.
      • 17.1.2.1. Overview
      • 17.1.2.2. Product Portfolio
      • 17.1.2.3. Profitability by Market Segments
      • 17.1.2.4. Sales Footprint
      • 17.1.2.5. Strategy Overview
        • 17.1.2.5.1. Marketing Strategy
        • 17.1.2.5.2. Product Strategy
        • 17.1.2.5.3. Channel Strategy
    • 17.1.3. Episensors Inc.
      • 17.1.3.1. Overview
      • 17.1.3.2. Product Portfolio
      • 17.1.3.3. Profitability by Market Segments
      • 17.1.3.4. Sales Footprint
      • 17.1.3.5. Strategy Overview
        • 17.1.3.5.1. Marketing Strategy
        • 17.1.3.5.2. Product Strategy
        • 17.1.3.5.3. Channel Strategy
    • 17.1.4. Flir Systems Inc.
      • 17.1.4.1. Overview
      • 17.1.4.2. Product Portfolio
      • 17.1.4.3. Profitability by Market Segments
      • 17.1.4.4. Sales Footprint
      • 17.1.4.5. Strategy Overview
        • 17.1.4.5.1. Marketing Strategy
        • 17.1.4.5.2. Product Strategy
        • 17.1.4.5.3. Channel Strategy
    • 17.1.5. Hamamatsu Photonics K.K.
      • 17.1.5.1. Overview
      • 17.1.5.2. Product Portfolio
      • 17.1.5.3. Profitability by Market Segments
      • 17.1.5.4. Sales Footprint
      • 17.1.5.5. Strategy Overview
        • 17.1.5.5.1. Marketing Strategy
        • 17.1.5.5.2. Product Strategy
        • 17.1.5.5.3. Channel Strategy
    • 17.1.6. Horiba Ltd.
      • 17.1.6.1. Overview
      • 17.1.6.2. Product Portfolio
      • 17.1.6.3. Profitability by Market Segments
      • 17.1.6.4. Sales Footprint
      • 17.1.6.5. Strategy Overview
        • 17.1.6.5.1. Marketing Strategy
        • 17.1.6.5.2. Product Strategy
        • 17.1.6.5.3. Channel Strategy
    • 17.1.7. Newport Corporation
      • 17.1.7.1. Overview
      • 17.1.7.2. Product Portfolio
      • 17.1.7.3. Profitability by Market Segments
      • 17.1.7.4. Sales Footprint
      • 17.1.7.5. Strategy Overview
        • 17.1.7.5.1. Marketing Strategy
        • 17.1.7.5.2. Product Strategy
        • 17.1.7.5.3. Channel Strategy
    • 17.1.8. Sensors Unlimited
      • 17.1.8.1. Overview
      • 17.1.8.2. Product Portfolio
      • 17.1.8.3. Profitability by Market Segments
      • 17.1.8.4. Sales Footprint
      • 17.1.8.5. Strategy Overview
        • 17.1.8.5.1. Marketing Strategy
        • 17.1.8.5.2. Product Strategy
        • 17.1.8.5.3. Channel Strategy
    • 17.1.9. Lynred
      • 17.1.9.1. Overview
      • 17.1.9.2. Product Portfolio
      • 17.1.9.3. Profitability by Market Segments
      • 17.1.9.4. Sales Footprint
      • 17.1.9.5. Strategy Overview
        • 17.1.9.5.1. Marketing Strategy
        • 17.1.9.5.2. Product Strategy
        • 17.1.9.5.3. Channel Strategy
    • 17.1.10. Teledyne Dalsa Inc
      • 17.1.10.1. Overview
      • 17.1.10.2. Product Portfolio
      • 17.1.10.3. Profitability by Market Segments
      • 17.1.10.4. Sales Footprint
      • 17.1.10.5. Strategy Overview
        • 17.1.10.5.1. Marketing Strategy
        • 17.1.10.5.2. Product Strategy
        • 17.1.10.5.3. Channel Strategy
    • 17.1.11. Laser Components GmbH
      • 17.1.11.1. Overview
      • 17.1.11.2. Product Portfolio
      • 17.1.11.3. Profitability by Market Segments
      • 17.1.11.4. Sales Footprint
      • 17.1.11.5. Strategy Overview
        • 17.1.11.5.1. Marketing Strategy
        • 17.1.11.5.2. Product Strategy
        • 17.1.11.5.3. Channel Strategy
    • 17.1.12. Excelitas Technologies Corp.
      • 17.1.12.1. Overview
      • 17.1.12.2. Product Portfolio
      • 17.1.12.3. Profitability by Market Segments
      • 17.1.12.4. Sales Footprint
      • 17.1.12.5. Strategy Overview
        • 17.1.12.5.1. Marketing Strategy
        • 17.1.12.5.2. Product Strategy
        • 17.1.12.5.3. Channel Strategy

18. Assumptions & Acronyms Used

19. Research Methodology

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!