Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Orion Market Research | PRODUCT CODE: 1610999

Cover Image

PUBLISHER: Orion Market Research | PRODUCT CODE: 1610999

Global DNA Methylation Detection Technology Market 2024-2031

PUBLISHED:
PAGES: 190 Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
Unprintable PDF & Excel (Single User License)
USD 4000
Printable PDF & Excel (Corporate License)
USD 6625

Add to Cart

DNA Methylation Detection Technology Market Size, Share & Trends Analysis Report by Product (Consumables, Instruments and Software), by Technology (Polymerase Chain Reaction (PCR), Microarray and Sequencing), by Application (Translational Research and Diagnostic Procedure), and by End-Users (Contract Research Organization (CRO), Research and Academic Laboratories and Biopharmaceutical and Biotech Companies) Forecast Period (2024-2031)

DNA methylation detection technology market is anticipated to grow at a significant CAGR of 10.3% during the forecast period (2024-2031). The market growth is attributed to increasing emerging startups in the biotechnology and pharmaceutical industries, growing partnerships between academic institutions, and growing use of DNA methylation detection technology as epigenetic biomarkers with an increasing range of tools, software, and consumables. According to the National Center for Biotechnology Information (NCBI), in September 2023, an individual's diet and lifestyle significantly influence cancer etiology. Studies suggest that dietary habits may contribute to over 30.0% of cancer-related mortalities in the US. It has been observed that around 70.0%-80.0% of all CpG sites in the genome undergo methylation, and this modification is distributed across diverse genomic regions.

Market Dynamics

Increasing Demand for Techniques Based on Bisulfite Treatment

Bisulfite treatment is one of the widely used and effective methods for categorizing 5-methyl cytosine and nonmethylated bases. Exposing the genomic DNA to sodium bisulfite induces nonmethylated cytosine (C) deamination and converts it to uracil (U), while the methylated cytosine remains intact. Uracil is finally converted to thymine (T) following the Polymerase Chain Reaction (PCR). As a result, the gene methylation information is transmitted to the sequence information. The gene features, such as melting point (temperature) and specific identification interactions, change owing to the sequence changes. The differences between these features form the basis of the DNA methylation analysis.

Growing Adoption of Next-Generation Sequencing (NGS)

NGS-based methods for DNA methylation analysis, such as Whole-Genome Bisulfite Sequencing (WGBS) and Reduced Representation Bisulfite Sequencing (RRBS), are growing more widespread owing to their ability to provide comprehensive methylation profiles at single-base resolution. Compared to array-based technologies, NGS made possible deep sequencing in a short time (from one to a few days), producing billions of short DNA samples known as reads (ranging from 50-400 nucleotides) and providing better coverage of all possible methylation sites in the human genome.

Market Segmentation

  • Based on the product, the market is segmented into consumables, instruments, and software.
  • Based on the technology, the market is segmented into PCR, microarray, and sequencing.
  • Based on the application, the market is segmented into translational research and diagnostic procedures.
  • Based on the end-user, the market is segmented into Contract Research Organizations (CROs), research and academic laboratories, and biopharmaceutical and biotech companies.

Polymerase Chain Reaction (PCR) is projected to hold the Largest Market Share

The primary factors supporting the growth include PCR-based techniques, which are frequently employed to investigate DNA methylation on a gene-specific basis. Bisulfite sequencing, methylation-specific PCR, methylation-sensitive high-resolution melting PCR, and real-time PCR-based MethyLight are some variations of this technique. The key players bring a new innovative solution to biopharmaceutical customers in support of hereditary disease therapies. For instance, in January 2023, QIAGEN and Helix launched an exclusive partnership to advance next-generation sequencing companion diagnostics in hereditary diseases using NGS and PCR technologies. Additionally, the partnership to leverage the Helix(R) Laboratory Platform powered by QIAGEN's biopharma relationships, NGS capabilities, and global regulatory expertise. Addressing health burdens in neurodegenerative diseases, cardiovascular diseases, and auto-immune and inflammatory diseases that affect hundreds of millions globally.

Diagnostic Procedure to Hold a Considerable Market Share

The factors supporting segment growth include differential DNA Methylation Regions (DMRs) associated with disease can be identified in an unbiased manner including Whole-Genome Bisulfite Sequencing (WGBS) and microarray-based techniques (such as Illumina 850K array), which can be clinically used as diagnostic markers. To further leverage the methylation platform and major key players introducing Research Use Only (RUO) technology solution for cancer prognosis, minimal residual disease and recurrence monitoring and biomarker discovery. The new technology solution has the versatility to be used in solid tumor research and can be customized to improve performance in specific use cases, including custom classifier development. For instance, in January 2023, GRAIL introduced a state-of-the-art methylation-based solution to accelerate cancer research in the post-diagnosis setting. The new technology solution uses GRAIL's proprietary targeted methylation platform to analyze cell-free DNA (cfDNA) isolated from peripheral blood for cancer signal interrogation. Potential research use cases include prognosis, minimal residual disease detection, and recurrence monitoring across different cancer types in research studies.

Regional Outlook

The global DNA methylation detection technology market is further segmented based on geography including North America (the US, and Canada), Europe (the UK, Italy, Spain, Germany, France, and the Rest of Europe), Asia-Pacific (India, China, Japan, South Korea, and Rest of Asia-Pacific), and the Rest of the World (the Middle East & Africa, and Latin America).

Growing Demand for DNA Methylation Detection Technology in Europe

The regional growth is attributed to the increasing DNA methylation influenced by environmental factors such as diet, hormones, stress, drugs, or exposure to environmental chemicals. Additionally, increasing DNA methylation-based diseases such as human neurological diseases, including several neuropsychiatric illnesses (schizophrenia, depression, ADHD), neurodevelopmental disorder (Rett syndrome), neurodegenerative disease (Alzheimer's disease), and cognitive impairment drive the demand for DNA methylation detection technology. According to the CORDIS-EU, in June 2023, between 50 to 75 million children and adults in Europe suffer from early onset neurodevelopmental conditions.

North America Holds Major Market Share

North America holds a significant share owing to the presence of DNA Methylation Detection Technology offering companies such as Agilent Technologies, Inc., Bio-Rad Laboratories, Inc., Illumina, Inc., Thermo Fisher Scientific Inc., and others. The market growth is attributed to the improvements in detection techniques and analytical platforms as well as increasing awareness of the function that DNA methylation plays in a variety of biological processes and disorders that drive the growth of the market. DNA methylation profiling allows for the robust sub-classification of four disease groupings, and the addition of DNA methylation biomarkers can greatly enhance disease-risk stratification. For instance, in June 2024, Illumina Inc., in DNA sequencing and array-based technologies, introduced DRAGENT" v4.3, the latest version of its DRAGEN'" software, part of the Illumina Connected Software portfolio, for analysis of next-generation sequencing data. Other advancements include RNA accuracy improvements and the extension of lossless Original Read Archive (ORA) compression functionality, which can now support human methylation data and nonhuman data with a high compression ratio.

The major companies serving the DNA methylation detection technology market include Agilent Technologies, Inc., Bio-Rad Laboratories, Inc., Illumina, Inc., QIAGEN N.V., and Thermo Fisher Scientific Inc. among others. The market players are increasingly focusing on business expansion and product development by applying strategies such as collaborations, mergers and acquisitions to stay competitive in the market.

Recent Developments

  • In April 2024, Guardant Health, Inc., a precision oncology company, announced it presented data from nine studies highlighting advances in methylation-based epigenomic analysis for precision oncology at the 2024 American Association for Cancer Research (AACR) Annual Meeting. New research demonstrates the value of epigenomic analysis and methylation sequencing with Guardant liquid biopsy portfolio across the continuum of cancer care.
Product Code: OMR2028793

Table of Contents

1. Report Summary

  • Current Industry Analysis and Growth Potential Outlook
  • 1.1. Research Methods and Tools
  • 1.2. Market Breakdown
    • 1.2.1. By Segments
    • 1.2.2. By Region

2. Market Overview and Insights

  • 2.1. Scope of the Report
  • 2.2. Analyst Insight & Current Market Trends
    • 2.2.1. Key Industry Trends
    • 2.2.2. Recommendations
    • 2.2.3. Conclusion

3. Competitive Landscape

  • 3.1. Key Company Analysis
  • 3.2. Agilent Technologies, Inc.
    • 3.2.1. Overview
    • 3.2.2. Financial Analysis
    • 3.2.3. SWOT Analysis
    • 3.2.4. Recent Developments
  • 3.3. Bio-Rad Laboratories, Inc.
    • 3.3.1. Overview
    • 3.3.2. Financial Analysis
    • 3.3.3. SWOT Analysis
    • 3.3.4. Recent Developments
  • 3.4. Illumina, Inc.
    • 3.4.1. Overview
    • 3.4.2. Financial Analysis
    • 3.4.3. SWOT Analysis
    • 3.4.4. Recent Developments
  • 3.5. QIAGEN N.V.
    • 3.5.1. Overview
    • 3.5.2. Financial Analysis
    • 3.5.3. SWOT Analysis
    • 3.5.4. Recent Developments
  • 3.6. Thermo Fisher Scientific Inc.
    • 3.6.1. Overview
    • 3.6.2. Financial Analysis
    • 3.6.3. SWOT Analysis
    • 3.6.4. Recent Developments
  • 3.7. Key Strategy Analysis

4. Market Segmentation

  • 4.1. Global DNA Methylation Detection Technology Market by Product
    • 4.1.1. Consumables
    • 4.1.2. Instruments
    • 4.1.3. Software
  • 4.2. Global DNA Methylation Detection Technology Market by Technology
    • 4.2.1. Polymerase Chain Reaction (PCR)
    • 4.2.2. Microarray
    • 4.2.3. Sequencing
  • 4.3. Global DNA Methylation Detection Technology Market by Application
    • 4.3.1. Translational Research
    • 4.3.2. Diagnostic Procedure
  • 4.4. Global DNA Methylation Detection Technology Market by End-Users
    • 4.4.1. Contract Research Organization (CRO)
    • 4.4.2. Research and Academic Laboratories
    • 4.4.3. Biopharmaceutical and Biotech Companies

5. Regional Analysis

  • 5.1. North America
    • 5.1.1. United States
    • 5.1.2. Canada
  • 5.2. Europe
    • 5.2.1. UK
    • 5.2.2. Germany
    • 5.2.3. Italy
    • 5.2.4. Spain
    • 5.2.5. France
    • 5.2.6. Rest of Europe
  • 5.3. Asia-Pacific
    • 5.3.1. China
    • 5.3.2. India
    • 5.3.3. Japan
    • 5.3.4. South Korea
    • 5.3.5. Rest of Asia-Pacific
  • 5.4. Rest of the World
    • 5.4.1. Latin America
    • 5.4.2. Middle East and Africa

6. Company Profiles

  • 6.1. Abcam plc
  • 6.2. Active Motif, Inc.
  • 6.3. BioCat GmbH
  • 6.4. Biocompare
  • 6.5. Bioneer Corp.
  • 6.6. Boca Scientific Inc.
  • 6.7. CD Genomics
  • 6.8. Diagenode Inc.
  • 6.9. Epigentek Group Inc.
  • 6.10. Integrated DNA Technologies, Inc.
  • 6.11. Merck KGaA
  • 6.12. Methyl Detect
  • 6.13. New England Biolabs, Inc.
  • 6.14. Oxford Nanopore Technologies Ltd.
  • 6.15. Pacific Biosciences of California, Inc.
  • 6.16. PerkinElmer, Inc.
  • 6.17. Promega Corp.
  • 6.18. Roche Holding AG
  • 6.19. Sysmex Corp.
  • 6.20. Takara Bio Inc.
  • 6.21. Tecan Group Ltd.
  • 6.22. Twist Bioscience
  • 6.23. Zymo Research Corp.
Product Code: OMR2028793

LIST OF FIGURES

  • 1. Global DNA Methylation Detection Technology Market Research And Analysis By Product, 2023 Vs 2031 (%)
  • 2. Global DNA Methylation Detection Technology Consumables Market Share By Region, 2023 Vs 2031 (%)
  • 3. Global DNA Methylation Detection Technology Instruments Market Share By Region, 2023 Vs 2031 (%)
  • 4. Global DNA Methylation Detection Technology Software Market Share By Region, 2023 Vs 2031 (%)
  • 5. Global DNA Methylation Detection Technology Market Research And Analysis By Technology, 2023 Vs 2031 (%)
  • 6. Global DNA Methylation Detection Polymerase Chain Reaction (PCR) Technology Market Share By Region, 2023 Vs 2031 (%)
  • 7. Global DNA Methylation Detection Microarray Technology Market Share By Region, 2023 Vs 2031 (%)
  • 8. Global DNA Methylation Detection Sequencing Technology Market Share By Region, 2023 Vs 2031 (%)
  • 9. Global DNA Methylation Detection Technology Market Research And Analysis By Application, 2023 Vs 2031 (%)
  • 10. Global DNA Methylation Detection Technology For Translational Research Market Share By Region, 2023 Vs 2031 (%)
  • 11. Global DNA Methylation Detection Technology For Diagnostic Procedure Market Share By Region, 2023 Vs 2031 (%)
  • 12. Global DNA Methylation Detection Technology Market Research And Analysis By End-Users, 2023 Vs 2031 (%)
  • 13. Global DNA Methylation Detection Technology For Contract Research Organization (CRO) Market Share By Region, 2023 Vs 2031 (%)
  • 14. Global DNA Methylation Detection Technology For Research and Academic Laboratories Market Share By Region, 2023 Vs 2031 (%)
  • 15. Global DNA Methylation Detection Technology For Biopharmaceutical and Biotech Companies Market Share By Region, 2023 Vs 2031 (%)
  • 16. Global DNA Methylation Detection Technology Market Share By Region, 2023 Vs 2031 (%)
  • 17. US DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 18. Canada DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 19. UK DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 20. France DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 21. Germany DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 22. Italy DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 23. Spain DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 24. Rest Of Europe DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 25. India DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 26. China DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 27. Japan DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 28. South Korea DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 29. Rest Of Asia-Pacific DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 30. Rest Of The World DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 31. Latin America DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
  • 32. Middle East And Africa DNA Methylation Detection Technology Market Size, 2023-2031 ($ Million)
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!