PUBLISHER: Knowledge Sourcing Intelligence | PRODUCT CODE: 1627623
PUBLISHER: Knowledge Sourcing Intelligence | PRODUCT CODE: 1627623
The global nanocomposites market is expected to grow at a CAGR of 8.68%, reaching a market size of US$4,633.47 million in 2030 from US$3,056.72 million in 2025.
The composition of their dispersed phase and matrix materials allows nanocomposites to be differentiated from one another. Their individual property component's structure and other such factors influence them greatly. Metal matrix nanocomposites (MMNCs) use a ductile metallic matrix or ductile alloy. These materials benefit from metal properties such as high strength, modulus, and toughness, in addition to ceramic components. For this reason, MMNCs are suitable for fabricating structures that require high resistance to shear or compressive processes at elevated service temperatures.
Moreover, the market will also benefit from increased demand for nanocomposites in hybrid and fuel-efficient electric vehicles. Accordingly, due to the increasing demand for eco-friendly and sustainable cars, the need for nanocomposites in the automotive sector will arise, hence promoting the market's growth.
Carbon nanotubes (CNTs) are among the most common composites for producing functional films such as tobacco control products. Currently, tin oxide indium is the element that is used in the production of TCFs. Due to the technological advancements in the manufacturing of CNTs, TCF will soon be obsolete, as better, cheaper, and more efficient CNT frameless transparent films are on the horizon. In addition, these include arc discharge, chemical vapor deposition, and laser vaporization, which are some preferred important and advanced commercial manufacturing processes against the earlier synthesis methods. These are the easier routes to access high-performance CNT. Advanced techniques such as combustion chemical vapor deposition and plasma-enhanced chemical vapor deposition are known to be used extensively for the fabrication of single-walled carbon nanotubes.
In addition, type nanocomposites containing carbon nanotubes have recently earned fame and have led to new applications due to their excellent mechanical, tensile, thermal, chemical, and enhanced burning-resistant characteristics. CNT is also used for specialized tasks, such as shielding against electromagnetic interference or from static on an aircraft's wings and body. Possible application of strain CNT-based TCF in textiles for lightweight, flexible, and stretchable optoelectronics. Further, the developments made in stabilizing the product, as well as its properties and fabrication, could consequently widen the product candidacies. Moreover, doping with MoOx has also improved the stability and reliability of TCF to a great extent. Thus, charge transfer doping enhances the TCF's thermal stability and electrical performance.
Global Nano-composites Market Geographical Outlook
The demand for the product in various end-use sectors is adding to the number of local producers in Southeast Asia. Therefore, the regional market is likely to benefit and continue leading due to the increasing use of electronics and semiconductors in the automotive, food and beverage, packaging, and pharmaceutical industries.
Moreover, carbon nanotubes find applications in a myriad of transistors, sensors, integrated circuits, atomic force microscopy probes, and many other electronic devices. Consequently, there will be an increase in the demand for these products in the markets of China, Japan, South Korea, and India. The regional market is anticipated to be driven by these countries' rapidly expanding electronic manufacturing sectors due to the high consumer demand for electronic devices within the sector.
Reasons for buying this report:-
What do businesses use our reports for?
Industry and Market Insights, Opportunity Assessment, Product Demand Forecasting, Market Entry Strategy, Geographical Expansion, Capital Investment Decisions, Regulatory Framework & Implications, New Product Development, Competitive Intelligence