PUBLISHER: Inkwood Research | PRODUCT CODE: 1516708
PUBLISHER: Inkwood Research | PRODUCT CODE: 1516708
Hypertriglyceridemia (HTG) is a condition marked by high triglyceride levels in the blood. Triglycerides, a type of fat, are sourced from dietary intake and produced by the body. Elevated triglyceride levels pose risks for cardiovascular diseases like heart disease and stroke.
Additionally, hypertriglyceridemia correlates with obesity, poorly controlled diabetes, hypothyroidism, liver or kidney disease, and specific genetic disorders. Lifestyle factors such as high-fat diets, excessive alcohol consumption, and physical inactivity can elevate triglycerides. Treatment includes dietary changes, weight management, regular exercise, and medication as necessary.
Key growth enablers of the global hypertriglyceridemia market:
Hypertriglyceridemia can be managed through lifestyle changes such as reducing fat and carbohydrate intake, limiting alcohol, quitting smoking, and regular exercise.
Moreover, therapeutic approaches such as statins and fibrates are employed to reduce triglyceride (TG) levels. Currently, statins and fibrates represent the main pharmacological therapies for hypertriglyceridemia (HTG). However, certain patients may be ineligible for or may not respond to these treatments.
To address this gap, companies are developing new therapeutic approaches aimed at more effectively reducing triglycerides in the bloodstream and mitigating the impact of HTG. Notably, approaches targeting apolipoprotein C-III and ANGPTL are being extensively explored.
In parallel, emerging drugs based on apolipoprotein C-III have shown promising results and are expected to reach the market in the near future. The anticipated launch of these innovative treatments could significantly advance HTG management, providing improved options for patients resistant to current therapies.
Key growth restraining factors of the global hypertriglyceridemia market:
Drug and product development for HTG is facing a high rate of clinical trial failures, occurring in the early phases and the later stages of development.
In line with this, Pfizer and Ionis recently discontinued the Phase III drug Vupanorsen after Phase II results did not justify continuing the clinical development program.
Similarly, other pharmaceutical companies have faced significant setbacks in late-stage clinical trials, even after promising outcomes in earlier stages.
Failures can arise at any stage during the development of emerging drugs. Initial clinical trial outcomes are not always indicative of later-stage results, and they can vary significantly across different patient cohorts. Hence, these setbacks with emerging therapies represent a significant barrier to market growth.
Hypertriglyceridemia | Disease Overview
The causes of hypertriglyceridemia can be divided into genetically based disorders (primary disorders) and secondary disorders caused by other conditions.
Lipoprotein lipase (LPL) deficiency and Apolipoprotein (Apo) C-II deficiency are two well-characterized genetic forms of HTG occurring in infancy as chylomicronemia syndromes, leading to early childhood HTG. In adults, severe HTG is often indicated by extremely high fasting levels of chylomicrons, very low-density lipoproteins (VLDL), and remnants.
Among the most common secondary causes of HTG are obesity, untreated diabetes mellitus, alcohol consumption, pregnancy, and various medications. Many of these secondary causes are associated with abnormalities in insulin responsiveness.
Hypertriglyceridemia (HTG) is diagnosed via a fasting lipid panel. As per the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) guidelines, HTG is classified based on triglyceride levels: mild (150-199 mg/dL), high (200-499 mg/dL), and very high (>=500 mg/dL).
When triglycerides exceed 400 mg/dL, LDL-C levels are often estimated using the Friedewald equation, which may underestimate LDL-C. Alternatively, non-HDL-C (total cholesterol minus HDL cholesterol) or direct LDL-C measurement can be considered.
Assessing LDL size or density is not considered beneficial for managing cardiovascular events in HTG. Apo B and Lp(a) levels may assist in assessing cardiovascular risk. Therapeutic options include effectively lowering Apo B levels, while niacin and estrogen may reduce Lp(a). However, evidence does not conclusively support that reducing Lp(a) prevents atherosclerotic cardiovascular disease.
High Lp(a) levels correlate with premature cardiovascular disease, warranting aggressive LDL management when Lp(a) levels are elevated. Hepatic steatosis or non-alcoholic steatohepatitis (NASH) often coexists with HTG due to insulin resistance. Elevated aminotransferases in liver function tests suggest further evaluation, including liver ultrasound.
Major players in the global hypertriglyceridemia market:
Arrowhead Pharmaceuticals Inc (Arrowhead) is a biotechnology company specializing in the development and commercialization of gene silencing therapeutics. The company employs RNA chemistries and its proprietary TRiM platform to target and silence genes that cause diseases. Arrowhead's product pipeline includes ARO-AAT, GSK4532990, ARO-ANG3, ARO-APOC3, ARO-PNPLA3, ARO-C3, ARO-ENaC2, ARO-MUC5AC, ARO-RAGE, ARO-COV, ARO-DUX4, ARO-MMP7, JNJ-3989, ARO-SOD1, HZN-457, and Olpasiran. These therapeutics address various conditions, including hypertriglyceridemia, dyslipidemia, facioscapulohumeral muscular dystrophy, complement-mediated diseases, and muco-obstructive or inflammatory pulmonary conditions. They also target liver disease, idiopathic pulmonary fibrosis, gout, cardiovascular disease, and chronic hepatitis B. Moreover, Arrowhead operates laboratory facilities in San Diego, California, and Madison, Wisconsin, with its headquarters located in Pasadena, California, United States.
The company is developing Plozasiran, a drug designed to reduce the production of Apolipoprotein C-III (apoC-III). ApoC-III is a key component of triglyceride-rich lipoproteins (TRLs) such as VLDL and chylomicrons, and it is fundamental in regulating triglyceride metabolism. The company anticipates that reducing hepatic production of apoC-III could potentially decrease VLDL synthesis and assembly, enhance the breakdown of TRLs, and improve the clearance of VLDL and chylomicron remnants. Plozasiran is presently undergoing Phase II clinical trials for treating severe hypertriglyceridemia.
We Offer 10% Free Customization and 3 Months Analyst Support
Frequently Asked Questions (FAQs):
A: Yes, children can also develop hypertriglyceridemia, especially if they have a family history of lipid disorders or if they lead sedentary lifestyles and consume unhealthy diets. Early detection and intervention are crucial to prevent long-term health complications.
A: No, while related, hypertriglyceridemia specifically denotes elevated levels of triglycerides in the bloodstream. High cholesterol typically refers to elevated levels of LDL (low-density lipoprotein) cholesterol, commonly known as bad cholesterol, which also poses a risk factor for cardiovascular disease.