Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: IMARC | PRODUCT CODE: 1554566

Cover Image

PUBLISHER: IMARC | PRODUCT CODE: 1554566

Japan Virtual Power Plant Market Report by Technology (Distribution Generation, Demand Response, Mixed Asset), End User (Industrial, Commercial, Residential), and Region 2024-2032

PUBLISHED:
PAGES: 121 Pages
DELIVERY TIME: 5-7 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 2899
PDF & Excel (5 User License)
USD 3899
PDF & Excel (Corporate License)
USD 4899

Add to Cart

Japan virtual power plant market size is projected to exhibit a growth rate (CAGR) of 19.70% during 2024-2032. The increasing application of energy storage technologies, such as batteries, which complement virtual power plants by enabling them to store excess energy during periods of low demand and release it when demand is high, is driving the market.

A virtual power plant (VPP) is a sophisticated energy management system that harnesses the capabilities of various distributed energy resources (DERs) to function as a single, coordinated power generation and distribution entity. These resources can include solar panels, wind turbines, battery storage systems, and even demand response from consumers. Through advanced software and communication technologies, a VPP monitors and controls these DERs in real time, optimizing their operation for maximum efficiency and grid stability. It can dispatch surplus power to the grid when demand is high or store excess energy when demand is low. This dynamic approach helps balance the supply-demand equation, enhance grid reliability, and reduce greenhouse gas emissions. VPPs also offer benefits like cost savings for consumers, increased integration of renewable energy sources, and greater grid flexibility. They play a crucial role in the transition to a more sustainable and resilient energy system by efficiently managing decentralized energy resources and contributing to a cleaner, more reliable energy grid.

Japan Virtual Power Plant Market Trends:

The virtual power plant market in Japan is experiencing robust growth, driven by a confluence of factors. Firstly, the increasing integration of renewable energy sources into the power grid has fueled the demand for VPPs. As solar and wind energy generation can be intermittent, VPPs play a pivotal role in balancing supply and demand by aggregating these distributed resources. Furthermore, the growing emphasis on grid reliability and resilience has emerged as a key driver. VPPs offer grid operators enhanced flexibility and stability through their ability to quickly respond to fluctuations in power generation or demand. This capability becomes especially critical in regions prone to extreme weather events or other disruptions. Additionally, advances in technology have made VPP solutions more accessible and cost-effective. The advent of smart grid infrastructure, coupled with sophisticated data analytics and control systems, allows for efficient management and optimization of distributed energy assets. Apart from this, the increasing focus on sustainability and decarbonization efforts has spurred investments in VPPs as a means to reduce greenhouse gas emissions. Moreover, the proliferation of Internet of Things (IoT) devices and improved connectivity, which has enabled real-time monitoring and control of VPPs, thereby boosting their efficiency, is expected to drive the market in Japan.

Japan Virtual Power Plant Market Segmentation:

IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the country level for 2024-2032. Our report has categorized the market based on technology and end user.

Technology Insights:

  • Distribution Generation
  • Demand Response
  • Mixed Asset

The report has provided a detailed breakup and analysis of the market based on the technology. This includes distribution generation, demand response, and mixed asset.

End User Insights:

  • Industrial
  • Commercial
  • Residential

A detailed breakup and analysis of the market based on the end user have also been provided in the report. This includes industrial, commercial, and residential.

Regional Insights:

  • Kanto Region
  • Kansai/Kinki Region
  • Central/ Chubu Region
  • Kyushu-Okinawa Region
  • Tohoku Region
  • Chugoku Region
  • Hokkaido Region
  • Shikoku Region

The report has also provided a comprehensive analysis of all the major regional markets, which include Kanto Region, Kansai/Kinki Region, Central/ Chubu Region, Kyushu-Okinawa Region, Tohoku Region, Chugoku Region, Hokkaido Region, and Shikoku Region.

Competitive Landscape:

The market research report has also provided a comprehensive analysis of the competitive landscape. Competitive analysis such as market structure, key player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided.

Key Questions Answered in This Report:

  • How has the Japan virtual power plant market performed so far and how will it perform in the coming years?
  • What has been the impact of COVID-19 on the Japan virtual power plant market?
  • What is the breakup of the Japan virtual power plant market on the basis of technology?
  • What is the breakup of the Japan virtual power plant market on the basis of end user?
  • What are the various stages in the value chain of the Japan virtual power plant market?
  • What are the key driving factors and challenges in the Japan virtual power plant?
  • What is the structure of the Japan virtual power plant market and who are the key players?
  • What is the degree of competition in the Japan virtual power plant market?
Product Code: SR112024A18753

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Japan Virtual Power Plant Market - Introduction

  • 4.1 Overview
  • 4.2 Market Dynamics
  • 4.3 Industry Trends
  • 4.4 Competitive Intelligence

5 Japan Virtual Power Plant Market Landscape

  • 5.1 Historical and Current Market Trends (2018-2023)
  • 5.2 Market Forecast (2024-2032)

6 Japan Virtual Power Plant Market - Breakup by Technology

  • 6.1 Distribution Generation
    • 6.1.1 Overview
    • 6.1.2 Historical and Current Market Trends (2018-2023)
    • 6.1.3 Market Forecast (2024-2032)
  • 6.2 Demand Response
    • 6.2.1 Overview
    • 6.2.2 Historical and Current Market Trends (2018-2023)
    • 6.2.3 Market Forecast (2024-2032)
  • 6.3 Mixed Asset
    • 6.3.1 Overview
    • 6.3.2 Historical and Current Market Trends (2018-2023)
    • 6.3.3 Market Forecast (2024-2032)

7 Japan Virtual Power Plant Market - Breakup by End User

  • 7.1 Industrial
    • 7.1.1 Overview
    • 7.1.2 Historical and Current Market Trends (2018-2023)
    • 7.1.3 Market Forecast (2024-2032)
  • 7.2 Commercial
    • 7.2.1 Overview
    • 7.2.2 Historical and Current Market Trends (2018-2023)
    • 7.2.3 Market Forecast (2024-2032)
  • 7.3 Residential
    • 7.3.1 Overview
    • 7.3.2 Historical and Current Market Trends (2018-2023)
    • 7.3.3 Market Forecast (2024-2032)

8 Japan Virtual Power Plant Market - Breakup by Region

  • 8.1 Kanto Region
    • 8.1.1 Overview
    • 8.1.2 Historical and Current Market Trends (2018-2023)
    • 8.1.3 Market Breakup by Technology
    • 8.1.4 Market Breakup by End User
    • 8.1.5 Key Players
    • 8.1.6 Market Forecast (2024-2032)
  • 8.2 Kansai/Kinki Region
    • 8.2.1 Overview
    • 8.2.2 Historical and Current Market Trends (2018-2023)
    • 8.2.3 Market Breakup by Technology
    • 8.2.4 Market Breakup by End User
    • 8.2.5 Key Players
    • 8.2.6 Market Forecast (2024-2032)
  • 8.3 Central/ Chubu Region
    • 8.3.1 Overview
    • 8.3.2 Historical and Current Market Trends (2018-2023)
    • 8.3.3 Market Breakup by Technology
    • 8.3.4 Market Breakup by End User
    • 8.3.5 Key Players
    • 8.3.6 Market Forecast (2024-2032)
  • 8.4 Kyushu-Okinawa Region
    • 8.4.1 Overview
    • 8.4.2 Historical and Current Market Trends (2018-2023)
    • 8.4.3 Market Breakup by Technology
    • 8.4.4 Market Breakup by End User
    • 8.4.5 Key Players
    • 8.4.6 Market Forecast (2024-2032)
  • 8.5 Tohoku Region
    • 8.5.1 Overview
    • 8.5.2 Historical and Current Market Trends (2018-2023)
    • 8.5.3 Market Breakup by Technology
    • 8.5.4 Market Breakup by End User
    • 8.5.5 Key Players
    • 8.5.6 Market Forecast (2024-2032)
  • 8.6 Chugoku Region
    • 8.6.1 Overview
    • 8.6.2 Historical and Current Market Trends (2018-2023)
    • 8.6.3 Market Breakup by Technology
    • 8.6.4 Market Breakup by End User
    • 8.6.5 Key Players
    • 8.6.6 Market Forecast (2024-2032)
  • 8.7 Hokkaido Region
    • 8.7.1 Overview
    • 8.7.2 Historical and Current Market Trends (2018-2023)
    • 8.7.3 Market Breakup by Technology
    • 8.7.4 Market Breakup by End User
    • 8.7.5 Key Players
    • 8.7.6 Market Forecast (2024-2032)
  • 8.8 Shikoku Region
    • 8.8.1 Overview
    • 8.8.2 Historical and Current Market Trends (2018-2023)
    • 8.8.3 Market Breakup by Technology
    • 8.8.4 Market Breakup by End User
    • 8.8.5 Key Players
    • 8.8.6 Market Forecast (2024-2032)

9 Japan Virtual Power Plant Market - Competitive Landscape

  • 9.1 Overview
  • 9.2 Market Structure
  • 9.3 Market Player Positioning
  • 9.4 Top Winning Strategies
  • 9.5 Competitive Dashboard
  • 9.6 Company Evaluation Quadrant

10 Profiles of Key Players

  • 10.1 Company A
    • 10.1.1 Business Overview
    • 10.1.2 Services Offered
    • 10.1.3 Business Strategies
    • 10.1.4 SWOT Analysis
    • 10.1.5 Major News and Events
  • 10.2 Company B
    • 10.2.1 Business Overview
    • 10.2.2 Services Offered
    • 10.2.3 Business Strategies
    • 10.2.4 SWOT Analysis
    • 10.2.5 Major News and Events
  • 10.3 Company C
    • 10.3.1 Business Overview
    • 10.3.2 Services Offered
    • 10.3.3 Business Strategies
    • 10.3.4 SWOT Analysis
    • 10.3.5 Major News and Events
  • 10.4 Company D
    • 10.4.1 Business Overview
    • 10.4.2 Services Offered
    • 10.4.3 Business Strategies
    • 10.4.4 SWOT Analysis
    • 10.4.5 Major News and Events
  • 10.5 Company E
    • 10.5.1 Business Overview
    • 10.5.2 Services Offered
    • 10.5.3 Business Strategies
    • 10.5.4 SWOT Analysis
    • 10.5.5 Major News and Events

Company names have not been provided here as this is a sample TOC. The complete list is provided in the report.

11 Japan Virtual Power Plant Market - Industry Analysis

  • 11.1 Drivers, Restraints, and Opportunities
    • 11.1.1 Overview
    • 11.1.2 Drivers
    • 11.1.3 Restraints
    • 11.1.4 Opportunities
  • 11.2 Porters Five Forces Analysis
    • 11.2.1 Overview
    • 11.2.2 Bargaining Power of Buyers
    • 11.2.3 Bargaining Power of Suppliers
    • 11.2.4 Degree of Competition
    • 11.2.5 Threat of New Entrants
    • 11.2.6 Threat of Substitutes
  • 11.3 Value Chain Analysis

12 Appendix

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!