Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: IMARC | PRODUCT CODE: 1554495

Cover Image

PUBLISHER: IMARC | PRODUCT CODE: 1554495

Japan LiDAR Market Report by Installation Type, Component, Application, and Region 2024-2032

PUBLISHED:
PAGES: 118 Pages
DELIVERY TIME: 5-7 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 2899
PDF & Excel (5 User License)
USD 3899
PDF & Excel (Corporate License)
USD 4899

Add to Cart

The Japan LiDAR market size is projected to exhibit a growth rate (CAGR) of 19.26% during 2024-2032. The increasing demand for accurate and high-resolution three-dimensional (3D) mapping, rising technology integration in autonomous vehicles, imposition of various strategies and policies by the Government of Japan, increasing technology adoption by the utility industry, and growing technology demand in environmental conservation represent some of the key factors driving the market.

Light detection and ranging (LiDAR) refer to remote sensing technology that employs laser pulses for precise distance measurement and the generation of intricate three-dimensional (3D) maps of the surroundings. It encompasses airborne LiDAR, terrestrial LiDAR, and mobile LiDAR, each strategically designed to cater to specific applications. The LiDAR system comprises several essential components, including lasers, global positioning system (GPS) receivers, scanners, inertial measurement units (IMUs), and a data processing system. It is constructed from lightweight, high-strength, and durable materials, such as aluminum alloys and composites, which aids in delivering optimal efficiency and performance. LiDAR is widely used in urban planning, topographic mapping, autonomous vehicles, agriculture, flood modeling, forestry, archaeology, and environmental monitoring. Additionally, it finds extensive applications in disaster response, cartography, power line inspection, geomorphology studies, mining operations, coastal zone management, and cultural heritage documentation. LiDAR provides several advantages, such as high-resolution mapping, real-time data acquisition, non-invasive surveying, and improved disaster management. It also aids in enhancing object recognition capabilities, facilitating swift data collection, reducing field time, and providing the ability to penetrate dense vegetation.

Japan LiDAR Market Trends:

The increasing demand for accurate and high-resolution three-dimensional (3D) mapping in urban planning and infrastructure development projects is positively influencing the market growth. Additionally, rising technology integration in autonomous vehicles to provide real-time environmental awareness to self-driving cars, thus enhancing safety and navigation, is propelling the market growth. Along with this, the growing technology utilization in advanced driver assistance systems (ADAS) to mitigate the risk of accidents and enhance the driving experience is acting as another growth-inducing factor. Furthermore, the imposition of various strategies and policies by the Government of Japan to bolster disaster management and mitigation efforts is facilitating the adoption of LiDAR technology, as it aids in assessing disaster-stricken areas and enables efficient rescue operations. Apart from this, the increasing technology adoption by the utility industry to efficiently monitor transmission lines and assets, thus enabling proactive detection and rectification of faults, is contributing to the market growth. Moreover, the growing technology demand in environmental conservation to monitor wildlife habitats and make informed decisions that align with sustainability goals is catalyzing the market growth. In addition, the rising technology adoption in construction and real estate activities to provide precise elevation models, contour maps, and volumetric calculations is favoring the market growth. Moreover, increasing demand for LiDAR to facilitate the creation of detailed digital replicas of historical sites and artifacts, thus aiding in conservation efforts, is supporting the market growth.

Japan LiDAR Market Segmentation:

IMARC Group provides an analysis of the key trends in each segment of the Japan LiDAR market report, along with forecasts at the country level for 2024-2032. Our report has categorized the market based on installation type, component, and application.

Installation Type Insights:

  • Airborne
  • Terrestrial

The report has provided a detailed breakup and analysis of the market based on the installation type. This includes airborne and terrestrial.

Component Insights:

  • Laser Scanners
  • Navigation Systems
  • Global Positioning Systems
  • Others

A detailed breakup and analysis of the market based on the component has also been provided in the report. This includes laser scanners, navigation systems, global positioning systems, and others.

Application Insights:

  • Corridor Mapping
  • Engineering
  • Environment
  • Exploration
  • ADAS
  • Others

A detailed breakup and analysis of the market based on the application has also been provided in the report. This includes corridor mapping, engineering, environment, exploration, ADAS, and others.

Regional Insights:

  • Kanto Region
  • Kinki Region
  • Central/Chubu Region
  • Kyushu-Okinawa Region
  • Tohoku Region
  • Chugoku Region
  • Hokkaido Region
  • Shikoku Region

The report has also provided a comprehensive analysis of all the major regional markets, which include Kanto Region, Kinki Region, Central/Chubu Region, Kyushu-Okinawa Region, Tohoku Region, Chugoku Region, Hokkaido Region, and Shikoku Region.

Competitive Landscape:

The report has also provided a comprehensive analysis of the competitive landscape in the market. Competitive analysis such as market structure, key player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided.

Key Questions Answered in This Report:

  • How has the Japan LiDAR market performed so far and how will it perform in the coming years?
  • What has been the impact of COVID-19 on the Japan LiDAR market?
  • What is the breakup of the Japan LiDAR market on the basis of installation type?
  • What is the breakup of the Japan LiDAR market on the basis of component?
  • What is the breakup of the Japan LiDAR market on the basis of application?
  • What are the various stages in the value chain of the Japan LiDAR market?
  • What are the key driving factors and challenges in the Japan LiDAR market?
  • What is the structure of the Japan LiDAR market and who are the key players?
  • What is the degree of competition in the Japan LiDAR market?
Product Code: SR112024A10325

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Japan LiDAR Market - Introduction

  • 4.1 Overview
  • 4.2 Market Dynamics
  • 4.3 Industry Trends
  • 4.4 Competitive Intelligence

5 Japan LiDAR Market Landscape

  • 5.1 Historical and Current Market Trends (2018-2023)
  • 5.2 Market Forecast (2024-2032)

6 Japan LiDAR Market - Breakup by Installation Type

  • 6.1 Airborne
    • 6.1.1 Overview
    • 6.1.2 Historical and Current Market Trends (2018-2023)
    • 6.1.3 Market Forecast (2024-2032)
  • 6.2 Terrestrial
    • 6.2.1 Overview
    • 6.2.2 Historical and Current Market Trends (2018-2023)
    • 6.2.3 Market Forecast (2024-2032)

7 Japan LiDAR Market - Breakup by Component

  • 7.1 Laser Scanners
    • 7.1.1 Overview
    • 7.1.2 Historical and Current Market Trends (2018-2023)
    • 7.1.3 Market Forecast (2024-2032)
  • 7.2 Navigation Systems
    • 7.2.1 Overview
    • 7.2.2 Historical and Current Market Trends (2018-2023)
    • 7.2.3 Market Forecast (2024-2032)
  • 7.3 Global Positioning Systems
    • 7.3.1 Overview
    • 7.3.2 Historical and Current Market Trends (2018-2023)
    • 7.3.3 Market Forecast (2024-2032)
  • 7.4 Others
    • 7.4.1 Historical and Current Market Trends (2018-2023)
    • 7.4.2 Market Forecast (2024-2032)

8 Japan LiDAR Market - Breakup by Application

  • 8.1 Corridor Mapping
    • 8.1.1 Overview
    • 8.1.2 Historical and Current Market Trends (2018-2023)
    • 8.1.3 Market Forecast (2024-2032)
  • 8.2 Engineering
    • 8.2.1 Overview
    • 8.2.2 Historical and Current Market Trends (2018-2023)
    • 8.2.3 Market Forecast (2024-2032)
  • 8.3 Environment
    • 8.3.1 Overview
    • 8.3.2 Historical and Current Market Trends (2018-2023)
    • 8.3.3 Market Forecast (2024-2032)
  • 8.4 Exploration
    • 8.4.1 Overview
    • 8.4.2 Historical and Current Market Trends (2018-2023)
    • 8.4.3 Market Forecast (2024-2032)
  • 8.5 ADAS
    • 8.5.1 Overview
    • 8.5.2 Historical and Current Market Trends (2018-2023)
    • 8.5.3 Market Forecast (2024-2032)
  • 8.6 Others
    • 8.6.1 Historical and Current Market Trends (2018-2023)
    • 8.6.2 Market Forecast (2024-2032)

9 Japan LiDAR Market - Breakup by Region

  • 9.1 Kanto Region
    • 9.1.1 Overview
    • 9.1.2 Historical and Current Market Trends (2018-2023)
    • 9.1.3 Market Breakup by Installation Type
    • 9.1.4 Market Breakup by Component
    • 9.1.5 Market Breakup by Application
    • 9.1.6 Key Players
    • 9.1.7 Market Forecast (2024-2032)
  • 9.2 Kinki Region
    • 9.2.1 Overview
    • 9.2.2 Historical and Current Market Trends (2018-2023)
    • 9.2.3 Market Breakup by Installation Type
    • 9.2.4 Market Breakup by Component
    • 9.2.5 Market Breakup by Application
    • 9.2.6 Key Players
    • 9.2.7 Market Forecast (2024-2032)
  • 9.3 Central/ Chubu Region
    • 9.3.1 Overview
    • 9.3.2 Historical and Current Market Trends (2018-2023)
    • 9.3.3 Market Breakup by Installation Type
    • 9.3.4 Market Breakup by Component
    • 9.3.5 Market Breakup by Application
    • 9.3.6 Key Players
    • 9.3.7 Market Forecast (2024-2032)
  • 9.4 Kyushu-Okinawa Region
    • 9.4.1 Overview
    • 9.4.2 Historical and Current Market Trends (2018-2023)
    • 9.4.3 Market Breakup by Installation Type
    • 9.4.4 Market Breakup by Component
    • 9.4.5 Market Breakup by Application
    • 9.4.6 Key Players
    • 9.4.7 Market Forecast (2024-2032)
  • 9.5 Tohoku Region
    • 9.5.1 Overview
    • 9.5.2 Historical and Current Market Trends (2018-2023)
    • 9.5.3 Market Breakup by Installation Type
    • 9.5.4 Market Breakup by Component
    • 9.5.5 Market Breakup by Application
    • 9.5.6 Key Players
    • 9.5.7 Market Forecast (2024-2032)
  • 9.6 Chugoku Region
    • 9.6.1 Overview
    • 9.6.2 Historical and Current Market Trends (2018-2023)
    • 9.6.3 Market Breakup by Installation Type
    • 9.6.4 Market Breakup by Component
    • 9.6.5 Market Breakup by Application
    • 9.6.6 Key Players
    • 9.6.7 Market Forecast (2024-2032)
  • 9.7 Hokkaido Region
    • 9.7.1 Overview
    • 9.7.2 Historical and Current Market Trends (2018-2023)
    • 9.7.3 Market Breakup by Installation Type
    • 9.7.4 Market Breakup by Component
    • 9.7.5 Market Breakup by Application
    • 9.7.6 Key Players
    • 9.7.7 Market Forecast (2024-2032)
  • 9.8 Shikoku Region
    • 9.8.1 Overview
    • 9.8.2 Historical and Current Market Trends (2018-2023)
    • 9.8.3 Market Breakup by Installation Type
    • 9.8.4 Market Breakup by Component
    • 9.8.5 Market Breakup by Application
    • 9.8.6 Key Players
    • 9.8.7 Market Forecast (2024-2032)

10 Japan LiDAR Market - Competitive Landscape

  • 10.1 Overview
  • 10.2 Market Structure
  • 10.3 Market Player Positioning
  • 10.4 Top Winning Strategies
  • 10.5 Competitive Dashboard
  • 10.6 Company Evaluation Quadrant

11 Profiles of Key Players

  • 11.1 Company A
    • 11.1.1 Business Overview
    • 11.1.2 Services Offered
    • 11.1.3 Business Strategies
    • 11.1.4 SWOT Analysis
    • 11.1.5 Major News and Events
  • 11.2 Company B
    • 11.2.1 Business Overview
    • 11.2.2 Services Offered
    • 11.2.3 Business Strategies
    • 11.2.4 SWOT Analysis
    • 11.2.5 Major News and Events
  • 11.3 Company C
    • 11.3.1 Business Overview
    • 11.3.2 Services Offered
    • 11.3.3 Business Strategies
    • 11.3.4 SWOT Analysis
    • 11.3.5 Major News and Events
  • 11.4 Company D
    • 11.4.1 Business Overview
    • 11.4.2 Services Offered
    • 11.4.3 Business Strategies
    • 11.4.4 SWOT Analysis
    • 11.4.5 Major News and Events
  • 11.5 Company E
    • 11.5.1 Business Overview
    • 11.5.2 Services Offered
    • 11.5.3 Business Strategies
    • 11.5.4 SWOT Analysis
    • 11.5.5 Major News and Events

Company names have not been provided here as this is a sample TOC. Complete list to be provided in the final report.

12 Japan LiDAR Market - Industry Analysis

  • 12.1 Drivers, Restraints, and Opportunities
    • 12.1.1 Overview
    • 12.1.2 Drivers
    • 12.1.3 Restraints
    • 12.1.4 Opportunities
  • 12.2 Porters Five Forces Analysis
    • 12.2.1 Overview
    • 12.2.2 Bargaining Power of Buyers
    • 12.2.3 Bargaining Power of Suppliers
    • 12.2.4 Degree of Competition
    • 12.2.5 Threat of New Entrants
    • 12.2.6 Threat of Substitutes
  • 12.3 Value Chain Analysis

13 Appendix

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!