PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1454269
PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1454269
Metal-organic frameworks, or MOFs, are highly crystalline, porous materials with nanometre-sized pores and large internal surface areas. Their structures make them useful for applications such as carbon capture, adsorption of greenhouse gas methane, and dehumidification of air for room climate control. MOFs exhibit unique physicochemical properties, including high surface area, ultra-high porosity, low crystal density as well as remarkable thermal and chemical stabilities.
"The Global Market for Metal-Organic Frameworks (MOFs) 2024-2035" provides a comprehensive analysis of metal-organic frameworks (MOFs), an emerging class of highly porous materials with molecules designed to enable customized properties across diverse applications from gas storage and separation to water harvesting, biomedicine, sensors, energy storage and more. The report analyzes key synthesis methods, structure and properties of MOFs in comparison to other porous materials like zeolites and covalent organic frameworks (COFs). An assessment of global market revenues and demand forecasts from 2018-2035 is provided, segmented by end-use sector and region. Granular ten-year projections provide market outlooks for MOF adoption in carbon capture, hydrogen storage, catalysis, biomedicine, batteries and across 15 other key industries where these advanced materials promise performance advantages and sustainability benefits.
Additionally, the report profiles 35+ leading companies commercializing MOF technologies including innovative startups and major corporations. Competencies and partnerships span R&D around novel MOF production techniques, commercialization of formulations targeting gas separation/storage, drug delivery, water harvesting and next-generation solutions for carbon dioxide removal and heat exchangers. Companies profiled include Atomis, BASF, Disruptive Materials AB, H2MOF, novoMOF AG, Nuada, NuMat Technologies, Inc., and ProfMOF.