Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1415539

Cover Image

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1415539

The Global Market for Carbon Dioxide (CO2) Utilization 2024-2045

PUBLISHED:
PAGES: 231 Pages, 52 Tables, 50 Figures
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF (Single User License)
USD 1280

Add to Cart

There are a wide range of commercial opportunities in carbon dioxide (CO2) utilization, from aviation fuel to sportswear. This extensive report provides a detailed analysis of the growing global market for carbon utilization, forecasting growth in CO2 utilization across chemicals, fuels, polymers, building materials, agriculture and other sectors.

It assesses the addressable emissions sources by industry segment and competing carbon removal solutions while profiling key corporate players across the value chain spanning CO2 capture, CO2 conversion via thermochemical, electrochemical, catalytic and biological routes as well as mineralization concepts.

Multiple product opportunity areas are examined including synthetic hydrocarbon fuels and feedstocks, polycarbonates, polyols, industrial gases, enhanced oil recovery, yield boosting technologies, carbon nanomaterials and sustainable building products.

The report analyzes drivers, developments, investments, and challenges associated with transitioning CO2 into a viable renewable feedstock at scale. Regional market demand analysis covers North America, Europe, Asia Pacific, China and Rest of World geographies. Technology readiness and outlook is provided for different CO2 utilization pathways guiding research and adoption roadmaps.

Report contents include:

  • Carbon Capture, Utilization and Storage (CCUS) market overview across industrial sectors and competing removal solutions
  • Global market forecasts for Carbon Utilization from 2022 to 2045 - volumes and revenues
  • Analysis of CO2 conversion technologies - thermochemical, electrochemical, biological etc.
  • Assessment of synthetic hydrocarbon fuels, chemicals, polymers and building materials made from captured CO2
  • Analysis of CO2 reuse across agriculture, horticulture, enhanced oil recovery
  • Emerging concepts around mineralization pathways for carbon removal
  • Review of investments, policies, developments, partnerships, and funding
  • Profiles of 80+ companies across the CCUS value chain (full list of companies profiled in table of contents)
  • Evaluation of technology readiness, scalability challenges, projected adoption roadmaps
  • Regional market demand analysis - North America, Europe, Asia Pacific, China, RoW

TABLE OF CONTENTS

1. ABBREVIATIONS

2. RESEARCH METHODOLOGY

3. EXECUTIVE SUMMARY

  • 3.1. Main sources of carbon dioxide emissions
  • 3.2. CO2 as a commodity
  • 3.3. Carbon Dioxide (CO2) as a renewable carbon feedstock
    • 3.3.1. Chemicals
    • 3.3.2. Fuels
    • 3.3.3. Polymers
    • 3.3.4. Construction materials
    • 3.3.5. Food and feed
    • 3.3.6. Consumer products
  • 3.4. Meeting climate targets
  • 3.5. Market drivers and trends
  • 3.6. The current market and future outlook
  • 3.7. Industry developments 2020-2024
  • 3.8. Investments and funding
    • 3.8.1. Venture Capital Funding
      • 3.8.1.1. 2010-2023
      • 3.8.1.2. Carbon utilization VC deals 2022-2024
  • 3.9. Government CCUS initiatives
    • 3.9.1. North America
    • 3.9.2. Europe
    • 3.9.3. China
  • 3.10. Market map
  • 3.11. Commercial CCUS facilities and projects
    • 3.11.1. Facilities
      • 3.11.1.1. Operational
      • 3.11.1.2. Under development/construction
  • 3.12. CCUS Value Chain
  • 3.13. Carbon credits
  • 3.14. CO2 utilization forecast
    • 3.14.1. By market
    • 3.14.2. By revenues

4. CARBON UTILIZATION

  • 4.1. Overview
    • 4.1.1. Current market status
    • 4.1.2. Production capacities
    • 4.1.3. Benefits of carbon utilization
    • 4.1.4. Market challenges
  • 4.2. Co2 utilization pathways

5. TRANSFORMATION PROCESSES

  • 5.1. Thermochemical
    • 5.1.1. Process overview
    • 5.1.2. Plasma-assisted CO2 conversion
  • 5.2. Electrochemical conversion of CO2
    • 5.2.1. Process overview
  • 5.3. Photocatalytic and photothermal catalytic conversion of CO2
  • 5.4. Catalytic conversion of CO2
  • 5.5. Biological conversion of CO2
  • 5.6. Copolymerization of CO2
  • 5.7. Mineral carbonation

6. CO2-DERIVED PRODUCTS

  • 6.1. Fuels
    • 6.1.1. Overview
    • 6.1.2. Production routes
      • 6.1.2.1. Electrolyzers
      • 6.1.2.2. Low-carbon hydrogen
    • 6.1.3. Products & applications
      • 6.1.3.1. Vehicles
      • 6.1.3.2. Shipping
      • 6.1.3.3. Aviation
      • 6.1.3.4. Costs
      • 6.1.3.5. Ethanol
      • 6.1.3.6. Methanol
      • 6.1.3.7. Sustainable Aviation Fuel
      • 6.1.3.8. Methane
      • 6.1.3.9. Algae based biofuels
      • 6.1.3.10. CO2-fuels from solar
    • 6.1.4. Challenges
    • 6.1.5. SWOT analysis
    • 6.1.6. Companies
  • 6.2. Chemicals, Plastics & Polymers
    • 6.2.1. Overview
    • 6.2.2. Scalability
    • 6.2.3. Products
      • 6.2.3.1. Feedstocks
      • 6.2.3.2. Pathways
      • 6.2.3.3. Conversion into energy-rich intermediates
        • 6.2.3.3.1. Electrochemical technologies
        • 6.2.3.3.2. Costs
        • 6.2.3.3.3. Hydrogen (H2) and electrochemical CO2 utilization coupling
        • 6.2.3.3.4. Products from CO2 reduction
        • 6.2.3.3.5. Microbial conversion
        • 6.2.3.3.6. Plasma technology
        • 6.2.3.3.7. Aromatic hydrocarbons
        • 6.2.3.3.8. Photocatalytic reduction
      • 6.2.3.4. Urea production
      • 6.2.3.5. CO2-derived polymers
        • 6.2.3.5.1. Polycarbonate (PC)
          • 6.2.3.5.1.1. Aliphatic polycarbonate
          • 6.2.3.5.1.2. Polycarbonate polyols
        • 6.2.3.5.2. Polyhydroxyalkanoates (PHA)
        • 6.2.3.5.3. Polyurethanes
        • 6.2.3.5.4. Polycyclic aromatics
        • 6.2.3.5.5. Nylon
        • 6.2.3.5.6. Polyethylene
        • 6.2.3.5.7. Polypropylene
      • 6.2.3.6. Inert gas in semiconductor manufacturing
      • 6.2.3.7. Advanced carbon materials
        • 6.2.3.7.1. Carbon Nanotubes
        • 6.2.3.7.2. Graphene
        • 6.2.3.7.3. Carbon Black
        • 6.2.3.7.4. 3D-Printed Carbons
    • 6.2.4. SWOT analysis
    • 6.2.5. Companies
  • 6.3. Construction materials
    • 6.3.1. Overview
    • 6.3.2. Market structure
    • 6.3.3. CCUS technologies in the cement industry
    • 6.3.4. Products
      • 6.3.4.1. Carbonated aggregates
      • 6.3.4.2. Additives during mixing
      • 6.3.4.3. Carbonates from natural minerals
      • 6.3.4.4. Carbonates from waste
    • 6.3.5. Concrete curing
    • 6.3.6. Costs
    • 6.3.7. Challenges
    • 6.3.8. SWOT analysis
    • 6.3.9. Companies
  • 6.4. CO2 Utilization in Biological Yield-Boosting
    • 6.4.1. Overview
    • 6.4.2. Products & applications
      • 6.4.2.1. Greenhouses
      • 6.4.2.2. Algae cultivation
        • 6.4.2.2.1. Markets
      • 6.4.2.3. Microbial conversion
        • 6.4.2.3.1. Food and feed production
        • 6.4.2.3.2. Proteins
    • 6.4.3. Challenges
    • 6.4.4. SWOT analysis
    • 6.4.5. Companies
  • 6.5. CO2 Utilization in Enhanced Oil Recovery
    • 6.5.1. Overview
      • 6.5.1.1. Process
      • 6.5.1.2. CO2 sources
    • 6.5.2. CO2-EOR facilities and projects
    • 6.5.3. Challenges
    • 6.5.4. SWOT analysis
    • 6.5.5. Companies
  • 6.6. Enhanced mineralization
    • 6.6.1. Advantages
    • 6.6.2. In situ and ex-situ mineralization
    • 6.6.3. Enhanced mineralization pathways
    • 6.6.4. Challenges

7. COMPANY PROFILES

  • 7.1. Aether Diamonds
  • 7.2. Aircela Inc
  • 7.3. Air Company
  • 7.4. Air Protein
  • 7.5. Algal Bio Co., Ltd
  • 7.6. Algenol
  • 7.7. Arborea
  • 7.8. Arkeon Biotechnologies
  • 7.9. Asahi Kasei
  • 7.10. Avantium N.V
  • 7.11. Azolla
  • 7.12. Blue Planet Systems Corporation
  • 7.13. BluSky, Inc
  • 7.14. Brilliant Planet Systems
  • 7.15. C4X Technologies Inc
  • 7.16. C2CNT LLC
  • 7.17. Cambridge Carbon Capture Ltd
  • 7.18. CarbiCrete
  • 7.19. Carboclave
  • 7.20. Carbo Culture
  • 7.21. Carbon Corp
  • 7.22. Carbonaide Oy
  • 7.23. Carbonova
  • 7.24. Carbon8 Systems
  • 7.25. Carbon Blue
  • 7.26. CarbonBuilt
  • 7.27. CarbonCure Technologies Inc
  • 7.28. CarbonFree
  • 7.29. Carbon Limit
  • 7.30. Carbon Recycling International
  • 7.31. Carbon Sink LLC
  • 7.32. Carbon Upcycling Technologies
  • 7.33. Celanese Corporation
  • 7.34. CERT Systems, Inc
  • 7.35. Chiyoda Corporation
  • 7.36. CleanO2
  • 7.37. CO2 Gro, Inc
  • 7.38. Concrete4Change
  • 7.39. Coval Energy B.V
  • 7.40. Covestro AG
  • 7.41. Deep Branch Biotechnology
  • 7.42. Dimensional Energy
  • 7.43. ecoLocked GmbH
  • 7.44. Electrochaea GmbH
  • 7.45. Empower Materials, Inc
  • 7.46. enaDyne GmbH
  • 7.47. Fairbrics
  • 7.48. Fortera Corporation
  • 7.49. Greenore Cleantech
  • 7.50. HYCO1, Inc
  • 7.51. 1point8
  • 7.52. LanzaJet
  • 7.53. Lanzatech
  • 7.54. Liquid Wind AB
  • 7.55. Low Carbon Korea
  • 7.56. Low Carbon Materials
  • 7.57. Made of Air GmbH
  • 7.58. Mars Materials
  • 7.59. MCi Carbon
  • 7.60. Mineral Carbonation International (MCi) Carbon
  • 7.61. Neustark AG
  • 7.62. Newlight Technologies LLC
  • 7.63. Novo Nutrients
  • 7.64. Oakbio
  • 7.65. Obrist Group
  • 7.66. O.C.O
  • 7.67. OxEon Energy, LLC
  • 7.68. Oxylum
  • 7.69. Paebbl AB
  • 7.70. Phytonix Corporation
  • 7.71. Prometheus Fuels, Inc
  • 7.72. Prometheus Materials
  • 7.73. Seratech
  • 7.74. SkyNano Technologies
  • 7.75. Solar Foods Oy
  • 7.76. Solidia Technologies
  • 7.77. Synhelion
  • 7.78. Syzygy Plasmonics, Inc
  • 7.79. Tandem Technical
  • 7.80. Twelve
  • 7.81. UP Catalyst
  • 7.82. ViridiCO2

8. REFERENCES

List of Tables

  • Table 1. Key emerging application areas and opportunities for CO2 utilization
  • Table 2. CO2 transformation and utilization market drivers and trends
  • Table 3. Carbon utilization industry developments 2020-2024
  • Table 4. Carbon utilization VC deals 2022-2024
  • Table 5. Demonstration and commercial CCUS facilities in China
  • Table 6. Global commercial CCUS facilities-in operation
  • Table 7. Global commercial CCUS facilities-under development/construction
  • Table 8. CO2 utilization forecast by market (million metric tonnes), 2022-2045
  • Table 9. CO2 utilization forecast by market (billion USD), 2022-2045
  • Table 10. Carbon utilization revenue forecast by product (US$)
  • Table 11. Production capacities for CO2 based products
  • Table 12. CO2 utilization and removal pathways
  • Table 13. Market challenges for CO2 utilization
  • Table 14. Example CO2 utilization pathways
  • Table 15. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages
  • Table 16. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages
  • Table 17. CO2 derived products via biological conversion-applications, advantages and disadvantages
  • Table 18. Companies developing and producing CO2-based polymers
  • Table 19. Companies developing mineral carbonation technologies
  • Table 20. Market overview for CO2 derived fuels
  • Table 21. Main production routes and processes for manufacturing fuels from captured carbon dioxide
  • Table 22. CO2-derived fuels projects
  • Table 23. Thermochemical methods to produce methanol from CO2
  • Table 24. pilot plants for CO2-to-methanol conversion
  • Table 25. Microalgae products and prices
  • Table 26. Main Solar-Driven CO2 Conversion Approaches
  • Table 27. Market challenges for CO2 derived fuels
  • Table 28. Companies in CO2-derived fuel products
  • Table 29. Commodity chemicals and fuels manufactured from CO2
  • Table 30. Market potential for CO2-derived chemicals
  • Table 31. Feedstocks for producing CO2-derived chemicals
  • Table 32. Common pathways and products associated with the utilization of carbon dioxide (CO2) in chemical processes
  • Table 33. Methods for converting CO2 into CO or syngas for chemical intermediate
  • Table 34. Costs of CO2 electrochemical technologies
  • Table 35. Key CO2-consuming microorganisms that can be used for chemical production
  • Table 36. Key companies focused on microbial conversion of CO2 into chemicals and products
  • Table 37. Conversion pathways for CO2-derived polymeric materials
  • Table 38. Companies in CO2-derived chemicals products
  • Table 39. Conversion pathway for CO2-derived building materials
  • Table 40. Carbon capture technologies and projects in the cement sector
  • Table 41. Carbonation of recycled concrete companies
  • Table 42. Current and projected costs for some key CO2 utilization applications in the construction industry
  • Table 43. Market challenges for CO2 utilization in construction materials
  • Table 44. Companies in CO2 derived building materials
  • Table 45. CO2 utilization in biological processes
  • Table 46. Markets and applications for CO2-enhanced algae cultivation products
  • Table 47. Market challenges CO2 utilization in biological yield boosting
  • Table 48. Companies in CO2 Utilization in Biological Yield-Boosting
  • Table 49. Applications of CCS in oil and gas production
  • Table 50. CO2-EOR designs
  • Table 51. Challenges for CO2 utilization in enhanced oil recovery (EOR)
  • Table 52. CO2-EOR companies

List of Figures

  • Figure 1. Carbon emissions by sector
  • Figure 2. Overview of CCUS market
  • Figure 3. Pathways for CO2 use
  • Figure 4. Regional capacity share 2022-2033
  • Figure 5. Global investment in carbon capture 2010-2023, millions USD
  • Figure 6. Carbon Capture, Utilization, & Storage (CCUS) Market Map
  • Figure 7. CCS deployment projects, historical and to 2035
  • Figure 8. Existing and planned CCS projects
  • Figure 9. CCUS Value Chain
  • Figure 10. CO2 utilization forecast by market (million metric tonnes), 2022-2045
  • Figure 11. CO2 utilization forecast by market (billion USD), 2022-2045
  • Figure 12. Carbon dioxide utilization and removal cycle
  • Figure 13. CO2 non-conversion and conversion technology, advantages and disadvantages
  • Figure 14. Applications for CO2
  • Figure 15. Cost to capture one metric ton of carbon, by sector
  • Figure 16. Life cycle of CO2-derived products and services
  • Figure 17. Co2 utilization pathways and products
  • Figure 18. Plasma technology configurations and their advantages and disadvantages for CO2 conversion
  • Figure 19. Electrochemical CO2 reduction products
  • Figure 20. LanzaTech gas-fermentation process
  • Figure 21. Schematic of biological CO2 conversion into e-fuels
  • Figure 22. Econic catalyst systems
  • Figure 23. Mineral carbonation processes
  • Figure 24. Conversion route for CO2-derived fuels and chemical intermediates
  • Figure 25. Conversion pathways for CO2-derived methane, methanol and diesel
  • Figure 26. CO2 feedstock for the production of e-methanol
  • Figure 27. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2
  • Figure 28. SWOT analysis: CO2 utilization in fuels
  • Figure 29. Audi synthetic fuels
  • Figure 30. Conversion of CO2 into chemicals and fuels via different pathways
  • Figure 31. SWOT analysis: CO2 utilization in chemicals, plastics & polymers
  • Figure 32. Schematic of CCUS in cement sector
  • Figure 33. Carbon8 Systems' ACT process
  • Figure 34. CO2 utilization in the Carbon Cure process
  • Figure 35. SWOT analysis: CO2 utilization in construction materials
  • Figure 36. Algal cultivation in the desert
  • Figure 37. Example pathways for products from cyanobacteria
  • Figure 38. SWOT analysis: CO2 Utilization in Biological Yield-Boosting
  • Figure 39. Typical Flow Diagram for CO2 EOR
  • Figure 40. Large CO2-EOR projects in different project stages by industry
  • Figure 41. SWOT analysis: CO2 Utilization in EOR
  • Figure 42. Carbon mineralization pathways
  • Figure 43. CarbonCure Technology
  • Figure 44. CRI process
  • Figure 45. Colyser process
  • Figure 46. Made of Air's HexChar panels
  • Figure 47. Neustark modular plant
  • Figure 48. O12 Reactor
  • Figure 49. Sunglasses with lenses made from CO2-derived materials
  • Figure 50. CO2 made car part
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!