Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1634193

Cover Image

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1634193

Global Neurosurgery Market - 2025 - 2033

PUBLISHED:
PAGES: 176 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 4350
PDF & Excel (Multiple User License)
USD 4850
PDF & Excel (Enterprise License)
USD 7850

Add to Cart

The global neurosurgery market reached US$ 4.94 billion in 2024 and is expected to reach US$ 7.54 billion by 2033, growing at a CAGR of 4.5% during the forecast period 2025-2033.

Neurosurgery is a specialized field of medicine concerned with the diagnosis, treatment, and rehabilitation of neurological concerns. This encompasses the brain, spinal cord, peripheral nerves, and cerebrovascular system. Neurosurgeons are trained to undertake a wide range of surgical procedures to treat disorders such as traumatic injuries, tumors, congenital abnormalities, and degenerative diseases. The field comprises both operative and non-operative management procedures, allowing for a more comprehensive approach to patient care, including prevention, diagnosis, and rehabilitation.

Neurosurgery, as an active specialization, constantly changes in response to technological and surgical breakthroughs. Innovations like robotic-assisted surgery and intraoperative imaging improve procedure precision and patient outcomes. Furthermore, a better understanding of neurological diseases is driving research into new treatment methods, which may allow neurosurgeons to manage more complex neurological conditions. Ultimately, neurosurgery is an important part of modern medicine since it addresses some of the most difficult health concerns that people experience around the world.

Market Dynamics: Drivers & Restraints

Technological advancements

The Technological Advancements are expected to be a significant factor in the growth of the global neurosurgery market. As neurosurgery evolves, advances in surgical procedures and equipment improve the precision and efficacy of treatments for a variety of neurological diseases. The integration of modern technology such as artificial intelligence (AI) and machine learning (ML) is transforming diagnostic and therapeutic procedures, allowing for more accurate assessments and personalized treatment procedures for patients.

For instance, in March 2024, A Hong Kong-based research center under the Chinese Academy of Sciences (CAS) launched a new artificial intelligence (AI) tool CARES Copilot 1.0 to assist in complex brain surgery, even as the healthcare industry deals with an inadequate number of specialized databases for this procedure. CARES Copilot 1.0 AI model to help neurosurgeons provide more efficient clinical diagnoses and make better medical judgments based on sufficient references.

Minimally invasive surgical procedures are an additional significant accomplishment in neurosurgery. These approaches, which use smaller incisions than typical open surgeries, result in less patient trauma, faster recovery, and fewer complications. The introduction of specialized devices, such as neuroendoscopic tools and robotic-assisted surgical systems, has enabled difficult procedures to be performed more accurately and efficiently. As a result, patients benefit from faster recovery times and better outcomes, increasing demand for these revolutionary surgical approaches.

Furthermore, the neurosurgery market is experiencing a rise in R&D focused on developing next-generation equipment that improves surgical capabilities. Manufacturers are progressively investing in the development of new power tools that incorporate real-time imaging and AI capabilities, giving surgeons unparalleled levels of precision during procedures. This emphasis on technology innovation not only enhances operational efficiency but also corresponds with the growing trend toward customized medicine, in which therapies are tailored to the individual needs of patients based on their distinct medical profiles.

For instance, in April 2024, Insightec announced the launch of its next-generation neurosurgical platform in Europe. Exablate Prime also received CE clearance. This revolutionary device substantially enhances the existing Exablate Neuro platform, which uses magnetic resonance imaging (MRI)-guided focused ultrasound technology. Exablate Prime, designed to treat medication-refractory movement disorders such as essential tremor and Parkinson's disease, allows for incision-less neurosurgery as an outpatient operation, allowing patients a non-invasive treatment alternative that minimizes recovery time and hospital stays.

High costs of neurosurgery equipment

Factors such as high costs of neurosurgery equipment are expected to hamper the global neurosurgery market. The high costs of neurosurgical devices are expected to severely impede the growth of the global neurosurgery industry. As the need for improved surgical technology grows, so does the cost of the complex equipment. The cost of buying and maintaining advanced technology can be a significant challenge for many healthcare facilities, especially in areas with limited economies. This scenario is further complicated by the ongoing need to invest in instructing staff to utilize these new instruments efficiently, which adds another layer of cost to hospitals' budgets.

For instance, according to the National Institute of Health, the cost of a deep brain stimulation device ranges from $10,000 to $14,000. The total operative and device costs (per patient) range from $27,497 to $35,531 for deep brain stimulation.

Segment Analysis

The global neurosurgery market is segmented based on product, application, age group, end-user, and region.

Neuro interventional devices segment is expected to dominate the global neurosurgery market share

The radiofrequency coils segment is anticipated to dominate the global neurosurgery market owing to its technological advancements, recent launches and approvals, and increase in the number of neurological disorders. One of the primary benefits of neuro-interventional devices is their capacity to facilitate minimally invasive operations, which are associated with shorter recovery times, fewer postoperative problems, and less trauma for patients when compared to traditional open surgeries. These devices comprise several instruments including stents, embolic coils, and neurothrombectomy devices, all of which are intended to treat problems such as aneurysms and ischemic strokes using endovascular techniques. As healthcare practitioners become more aware of the benefits of these procedures, the demand for neuro-interventional devices is projected to increase significantly.

Furthermore, technological improvements have resulted in the creation of increasingly complex neuro-interventional devices that improve procedural accuracy and safety. Neurosurgeons may now execute difficult operations with better precision because of developments in robotics and imaging technology. This technical advancement not only improves surgical outcomes but also broadens the types of conditions that can be treated with these devices. As a result, healthcare institutions are more likely to invest in neuro-interventional technology, strengthening their position as an important segment of the neurosurgery market.

For instance, in February 2024, Royal Philips launched the new Azurion neuro biplane interventional system, which significantly improves its image-guided therapeutic system. The technology is intended to streamline neurovascular operations, allowing care teams to make faster judgments, treat more patients, and achieve better results. It has superior 2D and 3D imaging capabilities, as well as adjustable X-ray detector positioning. The device allows neuro-interventionists to carry out procedures more efficiently, perhaps increasing patient outcomes. This improves the experience for both staff and patients while also helping to reduce the cost of care. The Azurion neuro biplane system incorporates Philips' ClarityIQ low-dose imaging technology, neuro-specific tools, and services, resulting in a fully integrated solution for smooth procedural workflows, precise diagnosis, and treatment.

Moreover, in June 2024, MicroVention, a subsidiary of Terumo Corporation, launched its LVIS EVO Intraluminal Support Device in the United States. It is specifically intended for the treatment of wide-neck intracranial aneurysms. This novel device is now commercially accessible and represents a substantial improvement in neurovascular therapies.

Geographical Analysis

North America is expected to hold a significant position in the global neurosurgery market share

North America will likely account for a significant share of the global neurosurgery market, owing to its advanced healthcare infrastructure, a high prevalence of neurological disorders, technological advancements, and recent launches and approvals. One of the key drivers of the North America neurosurgery market is a strong healthcare system that allows for better surgical methods and technology. The United States, in particular, has established itself as a leader in medical technology development, with a number of major companies functioning in the neurosurgical field. These corporations constantly invest in R&D to develop new devices and improve existing ones. The existence of large manufacturers, as well as a robust regulatory environment, make it easier to introduce advanced neurosurgical devices, which enhances patient care.

For instance, in March 2024, Silk Road Medical, Inc., a company focused on reducing the risk of stroke and its devastating impact, announced that it had launched its Tapered ENROUTE Transcarotid Stent System to hospitals in the United States. This launch expands upon the company's prior ENROUTE Transcarotid Stent System, offering additional configurations to better tailor the Transcarotid Artery Revascularization (TCAR) procedure to patient anatomy.

Moreover, in April 2024, Expanse ICE announced that the ICE Aspiration System had received 510(k) clearance from the U.S. Food and Drug Administration. The ICE System is specifically designed to address the complex challenges associated with peripheral thrombectomies. Blood clots are the third most common vascular disease.

Asia Pacific is growing at the fastest pace in the global neurosurgery market

The Asia Pacific region is emerging as the fastest-growing market for neurosurgery, owing to a combination of demographic trends, increased healthcare investment, recent launches, and a rising number of neurological disorders. One of the most significant technical advances in the APAC neurosurgery market is the incorporation of robotics and minimally invasive techniques. These innovations enable more accurate surgical procedures, lowering the trauma associated with traditional open surgeries. Additionally, high-definition imaging tools have transformed preoperative planning and intraoperative guidance in neurosurgery. Advanced imaging modalities, such as MRI and CT scans, provide extensive information about brain anatomy, allowing surgeons to see complicated structures before and during surgery. This ability improves surgical precision, lowers the risk of complications, and, eventually, leads to improved patient results. Furthermore, the introduction of artificial intelligence (AI) and machine learning into diagnostic and surgical technologies improves the efficiency and effectiveness of neurosurgical treatments.

For instance, in February 2024, Indian medical imaging AI company InMed AI launched a new AI-powered tool for screening traumatic brain injuries (TBI). The Neuroshield CT TBI is a decision support tool for detecting and quantifying intracranial hemorrhage, fracture, and midline shift. Utilizing AI, it automatically processes brain CT images and alerts clinicians of critical findings.

Competitive Landscape

The major global players in the global neurosurgery market include Medtronic, Abbott, Boston Scientific Corporation, Elekta, Brainlab AG, B. Braun SE, MicroVention, Inc., Aleva Neurotherapeutics, Integra LifeSciences, and Stryker among others.

Emerging Players

Neurotech Innovations, Cadence Neuroscience, and Synaptive Medical among others

Key Developments

  • In September 2024, ZEISS Medical Technology launched the KINEVO 900 S. The latest Robotic Visualization System is a further development of the successful ZEISS KINEVO 900 platform. With the best digital visualization, collaborative assistant functions, and connected intelligence, ZEISS KINEVO 900 S offers more clarity for complex surgical procedures in neurosurgery and other surgical disciplines.
  • In November 2023, Amrita Hospital, Kochi opened Kerala's first neuro endoscopy center, the Amrita Centre for Neuro Endoscopy (ACNE). The center has an expert team in skull base, cranial, spine, robotic, and pediatric endoscopy, providing specialized care in endoscopic neurosurgery.

Why Purchase the Report?

  • Pipeline & Innovations: Reviews ongoing clinical trials, product pipelines, and forecasts upcoming advancements in medical devices and pharmaceuticals.
  • Product Performance & Market Positioning: Analyzes product performance, market positioning, and growth potential to optimize strategies.
  • Real-World Evidence: Integrates patient feedback and data into product development for improved outcomes.
  • Physician Preferences & Health System Impact: Examines healthcare provider behaviors and the impact of health system mergers on adoption strategies.
  • Market Updates & Industry Changes: Covers recent regulatory changes, new policies, and emerging technologies.
  • Competitive Strategies: Analyzes competitor strategies, market share, and emerging players.
  • Pricing & Market Access: Reviews pricing models, reimbursement trends, and market access strategies.
  • Market Entry & Expansion: Identifies optimal strategies for entering new markets and partnerships.
  • Regional Growth & Investment: Highlights high-growth regions and investment opportunities.
  • Supply Chain Optimization: Assesses supply chain risks and distribution strategies for efficient product delivery.
  • Sustainability & Regulatory Impact: Focuses on eco-friendly practices and evolving regulations in healthcare.
  • Post-market Surveillance: Uses post-market data to enhance product safety and access.
  • Pharmacoeconomics & Value-Based Pricing: Analyzes the shift to value-based pricing and data-driven decision-making in R&D.

The global neurosurgery market report delivers a detailed analysis with 60+ key tables, more than 50 visually impactful figures, and 176 pages of expert insights, providing a complete view of the market landscape.

Target Audience 2024

  • Manufacturers: Pharmaceutical, Medical Device, Biotech Companies, Contract Manufacturers, Distributors, Hospitals.
  • Regulatory & Policy: Compliance Officers, Government, Health Economists, Market Access Specialists.
  • Technology & Innovation: AI/Robotics Providers, R&D Professionals, Clinical Trial Managers, Pharmacovigilance Experts.
  • Investors: Healthcare Investors, Venture Fund Investors, Pharma Marketing & Sales.
  • Consulting & Advisory: Healthcare Consultants, Industry Associations, Analysts.
  • Supply Chain: Distribution and Supply Chain Managers.
  • Consumers & Advocacy: Patients, Advocacy Groups, Insurance Companies.
  • Academic & Research: Academic Institutions.
Product Code: MD9006

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Product
  • 3.2. Snippet by Application
  • 3.3. Snippet by Age Group
  • 3.4. Snippet by End-User
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
    • 4.1.2. Technological Advancements
    • 4.1.3. Restraints
    • 4.1.4. High Costs of Neurosurgery Equipment
    • 4.1.5. Opportunity
    • 4.1.6. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Reimbursement Analysis
  • 5.6. Patent Analysis
  • 5.7. SWOT Analysis
  • 5.8. DMI Opinion

6. By Product

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 6.1.2. Market Attractiveness Index, By Product
  • 6.2. Neuro Interventional Devices*
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 6.3. Neurosurgery Software
  • 6.4. Neuroendoscopes
  • 6.5. Radiosurgery Systems
  • 6.6. Neurosurgical Ablation Devices
  • 6.7. Others

7. By Application

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 7.1.2. Market Attractiveness Index, By Application
  • 7.2. Brain Tumors*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Cerebrovascular Surgery
  • 7.4. Cortical Mapping
  • 7.5. Parkinson's Disease and Tremors
  • 7.6. Others

8. By Age Group

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Age group
    • 8.1.2. Market Attractiveness Index, By Age group
  • 8.2. Pediatric
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Adult
  • 8.4. Geriatric

9. By End User

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 9.1.2. Market Attractiveness Index, By End User
  • 9.2. Hospitals*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Neurosurgery Centers
  • 9.4. Others

10. By Region

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2. Market Attractiveness Index, By Region
  • 10.2. North America
    • 10.2.1. Introduction
    • 10.2.2. Key Region-Specific Dynamics
    • 10.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 10.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Age Group
    • 10.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.7.1. U.S.
      • 10.2.7.2. Canada
      • 10.2.7.3. Mexico
  • 10.3. Europe
    • 10.3.1. Introduction
    • 10.3.2. Key Region-Specific Dynamics
    • 10.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 10.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Age Group
    • 10.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.7.1. Germany
      • 10.3.7.2. U.K.
      • 10.3.7.3. France
      • 10.3.7.4. Spain
      • 10.3.7.5. Italy
      • 10.3.7.6. Rest of Europe
  • 10.4. South America
    • 10.4.1. Introduction
    • 10.4.2. Key Region-Specific Dynamics
    • 10.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 10.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Age Group
    • 10.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.7.1. Brazil
      • 10.4.7.2. Argentina
      • 10.4.7.3. Rest of South America
  • 10.5. Asia-Pacific
    • 10.5.1. Introduction
    • 10.5.2. Key Region-Specific Dynamics
    • 10.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 10.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Age Group
    • 10.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.7.1. China
      • 10.5.7.2. India
      • 10.5.7.3. Japan
      • 10.5.7.4. South Korea
      • 10.5.7.5. Rest of Asia-Pacific
  • 10.6. Middle East and Africa
    • 10.6.1. Introduction
    • 10.6.2. Key Region-Specific Dynamics
    • 10.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 10.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Age Group
    • 10.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

11. Competitive Landscape

  • 11.1. Competitive Scenario
  • 11.2. Market Positioning/Share Analysis
  • 11.3. Mergers and Acquisitions Analysis

12. Company Profiles

  • 12.1. Medtronic*
    • 12.1.1. Company Overview
    • 12.1.2. Product Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Key Developments
  • 12.2. Abbott
  • 12.3. Boston Scientific Corporation
  • 12.4. Elekta
  • 12.5. Brainlab AG
  • 12.6. B. Braun SE
  • 12.7. MicroVention, Inc.
  • 12.8. Aleva Neurotherapeutics
  • 12.9. Integra LifeSciences
  • 12.10. Stryker

LIST NOT EXHAUSTIVE

13. Appendix

  • 13.1. About Us and Services
  • 13.2. Contact Us
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!