PUBLISHER: DataM Intelligence | PRODUCT CODE: 1489478
PUBLISHER: DataM Intelligence | PRODUCT CODE: 1489478
Overview
Global Renewable Energy Storage Market reached US$ 949.9 Million in 2023 and is expected to reach US$ 2,253.0 Million by 2031, growing with a CAGR of 11.4% during the forecast period 2024-2031.
Advanced technologies for energy storage are essential for improving the resilience, stability and dependability of the grid. It provide grid services that are necessary to keep an electrical grid stable and effective, particularly as the percentage of renewable energy grows. The services include frequency control, voltage support, peak shaving, load shifting and backup power which helps to boost market growth.
One of the main forces driving renewable energy storage is the world's transition to sustainable energy and decarbonization. Globally, industry, utilities and governments are establishing ambitious targets to boost the proportion of renewable energy in the energy mix, decrease greenhouse gas emissions and phase out fossil fuels. Energy storage promotes sustainability objectives and allows for the efficient integration of renewable energy sources.
Europe is the dominating region in the market due to the rapid expansion by the major key players. For instance, on October 25, 2022, Masdar, one of the world's leading renewable energy companies acquired Arlington Energy to Advance Renewable Energy Storage Market. The acquisition helps Masdar to expand its presence in UK and European renewable energy markets and support countries' net-zero objectives.
Dynamics
Integration of Renewable Energy Sources
As renewable energy sources like solar and wind power are inherently intermittent, the weather and time of day have an impact on the amount of electricity they can produce. By holding extra electricity while generation is high and releasing it when demand exceeds supply, energy storage technologies assist reduce this intermittency. Renewable energy systems become more viable and appealing to end-users and grid operators when they have this feature, which increases their dependability and stability. Grid harmony and adaptability are enabled by the integration of energy storage systems with renewable energy sources. Energy storage helps to preserve grid stability, lower peak loads and optimize patterns of energy supply and consumption by quickly adapting to variations in renewable output or abrupt changes in power demand.
By taking in and holding onto extra energy during high-generation times, such as sunny or windy days, energy storage allows the most efficient use of renewable energy sources. By using this stored energy at times of low renewable output or high demand, clean, renewable energy is used to its fullest potential without the need for backup power from fossil fuel-based sources.
Advancements in Energy Storage Technologies
Technological advances in energy storage lead to increased energy densities, which enable the storage of more energy in a smaller physical footprint. It is especially important for applications where space is limited, such as residences or electric vehicles (EVs), as it enables more flexibility in system design and integration. Improved performance parameters, such as quicker charging and discharging rates, lower self-discharge rates and greater round-trip efficiency, are shown by more recent energy storage devices. Energy storage systems are now more dependable, responsive and economical due to these improvements, which makes them more appealing to project developers and end-users.
Battery chemistries and manufacturing processes have improved, leading to longer cycle for energy storage devices. The days, storage technologies such as batteries can withstand a higher number of charge-discharge cycles without exhibiting noticeable deterioration, hence lowering maintenance costs and extending their operational lifespans. Because of economies of scale, energy storage technologies are now more affordable and competitive than traditional options. Declining costs per kilowatt-hour of storage capacity enhance the economic viability of renewable energy storage projects and stimulate more investment and deployment.
High Initial Costs of the Renewable Energy Storage
The large initial expenditure necessary for renewable energy storage systems discourages investors, utilities, project developers and end-users from undertaking such endeavors. Energy storage projects sometimes have a lengthy return on investment (ROI) period and prospective investors may be hesitant to commit due to the uncertainty around future income streams and cost reductions. Due to their expensive initial prices, energy storage systems may be beyond reach for many users in household and small-scale applications. Consumer adoption of renewable energy technology is heavily influenced by affordability and when prices are excessive, this hinders market penetration and implementation.
Fossil fuels and other conventional energy sources historically benefited from established infrastructure and cheaper initial costs. In terms of economic competitiveness, the high initial expenditures of renewable energy storage might be a disadvantage, particularly when contrasted with conventional power-generating techniques that lack storage. High initial costs increase the perceived risk associated with renewable energy storage projects. Investors and financiers may exhibit risk aversion due to uncertainties related to technology performance, market demand, regulatory changes and long-term revenue projections. It can limit the availability of funding and capital for energy storage initiatives.
The global renewable energy storage market is segmented based on type, technology, end-user and region.
Solar power is Dominating Type in the Renewable energy storage Market
Based on the type, the renewable energy storage market is segmented into wind power, hydroelectric power, solar power, bioenergy and others.
One of the main factors propelling the development of solar power type renewable energy storage is the global increase in the setup of solar PV systems. Energy storage technologies are becoming increasingly necessary to control intermittent solar power, store excess energy and maintain grid stability as solar PV installations increase. Because of daily/seasonal cycles, weather and fluctuations in sunshine availability, solar power is essentially intermittent. Batteries and other energy storage devices make it feasible to harvest and store solar energy during periods of high solar output and release it during times of high demand or low solar generation, therefore reducing volatility and enhancing grid resiliency.
Energy storage complements solar power by providing grid flexibility and stability. Energy storage systems help control peak loads, balance supply and demand, reduce the curtailment of excess solar power and improve grid resilience against disruptions or swings in solar output as solar energy becomes a greater portion of the grid's energy balance. Energy storage technologies, especially lithium-ion batteries, have been getting cheaper over time, which makes solar power integration with them more feasible and economical. Reduced prices per kilowatt-hour (kWh) of storage capacity boost the market's expansion and make solar plus storage projects economically feasible. The growing product launches by the major key players help to boost segment growth over the forecast period. For instance, on January 11, 2024, First Solar Inc. launched a 3.3 GW manufacturing facility in India. The new plant can produce 7 photovoltaic (PV) solar modules, developed in US and optimized for the Indian market.
Europe is Dominating the Renewable Energy Storage Market
Energy independence, greater utilization of renewable energy and a reduction in greenhouse gas emissions are the objectives of Europe's strict renewable energy laws and targets. Investments in renewable energy storage are encouraged by programs like the Renewable Energy Directive and the European Green Deal, which are important parts of the energy transition. When it comes to including renewable energy sources like hydropower and wind in its energy mix, Europe has made significant progress. Energy storage systems are critical to the effective integration of renewable energy sources because they regulate intermittent renewable supply, maintain grid stability and optimize energy consumption.
The widespread use of cutting-edge energy storage technology and solutions is leading to changes in European nations. The includes developments in thermal energy storage, battery storage, pumped hydro storage and hydrogen storage that are backed by financial incentives and research and development programs. More adaptable and durable networks are becoming a standard in Europe's energy environment. Energy storage systems improve the flexibility and efficiency of the grid by offering grid services including demand response, voltage support, peak shaving and frequency management. According to the data given by InnoEnergy, the share of Europe is estimated to reach around 69% by 2031 (39% in 2022).
The major global players in the market include Delta Electronics, Inc., General Electric Company, Hitachi, Ltd., Siemens Energy, Tesla, Inc., Toshiba Corporation, Trina Solar Co., Ltd., ABB Ltd., EVLO Energy Storage Inc. and NEC Corporation.
Lockdowns, travel restrictions and manufacturing and logistical difficulties during the pandemic's early stages created problems for the supply chain. The resulted in project delays and hindered market expansion by affecting the supply of parts, raw materials and equipment required for renewable energy storage systems. Due to labor shortages, supply chain interruptions and building limitations put in place to stop the virus's spread, many renewable energy projects including those involving energy storage solutions saw delays. The led to postponed installations and commissioning of energy storage systems.
The pandemic's effects on the economy, including as decreased consumer spending, volatile markets and budget cuts, caused an interruption to investment choices in the renewable energy industry. Emerging energy storage initiatives have been hampered by funding issues and investor risk aversion. Changes in energy demand patterns due to lockdowns, remote working and shifts in economic activities impacted the utilization and optimization of energy storage systems. Fluctuations in energy demand profiles and grid dynamics influenced the value proposition and business case for energy storage deployments.
Supply chains for essential components required in renewable energy storage technologies such asr are earth elements or lithium for batteries for wind turbine magnets are disrupted by the war. It can cause manufacturing delays, pricing volatility and shortages, which could delay the global implementation of energy storage systems. International trade agreements, taxes and export-import laws about renewable energy storage systems and components may be impacted by geopolitical tensions emanating from the war. Trade restrictions or political unrest in important exporting areas might impede investment and market expansion.
The war may divert attention and resources away from global energy transition efforts, including investments in renewable energy and energy storage infrastructure. Governments and industries may prioritize security and stability over climate-related initiatives, slowing down the pace of renewable energy adoption and storage deployment. The conflict may raise concerns about energy security, particularly in regions dependent on energy imports from Russia or Ukraine. The could lead to efforts to enhance domestic energy production, storage and resilience, potentially boosting demand for renewable energy storage solutions in affected regions.
The global renewable energy storage market report would provide approximately 62 tables, 57 figures and 160 Pages.
Target Audience 2024
LIST NOT EXHAUSTIVE