PUBLISHER: DataM Intelligence | PRODUCT CODE: 1396670
PUBLISHER: DataM Intelligence | PRODUCT CODE: 1396670
Global autonomous/self-driving cars market reached US$ 25.6 billion in 2022 and is expected to reach US$ 180.1 billion by 2030, growing with a CAGR of 27.8% during the forecast period 2023-2030.
Major players like Tesla, Waymo and traditional automakers are continuing to invest extensively in R&D to improve car autonomy, safety features and user experience. Furthermore, new entrants, startups and tech giants are innovating in unique ways, contributing to a competitive scene ripe for disruption and innovation.
However, challenges like as legislative barriers, public trust concerns and the need for considerable infrastructure development to facilitate widespread implementation remain. Collaboration among industry players and stakeholders is essential for addressing these challenges and ensuring autonomous vehicles' seamless absorption into society.
In India, an increasing number of startups are focusing on autonomous vehicle technologies. The startups are focused on sensor technologies, mapping and AI algorithms, among other things. For instance, in May 2022, Chiratae Ventures led a US$ 1.7 million seed round for India's first company producing inexpensive fully self-driving cars. Therefore, the Indian autonomous/ self-driving cars market is witnessing the highest growth in the forecasted period.
The degree of automation has a direct impact on consumer adoption and acceptance. Consumer trust and approval are more likely at Levels 4 and 5, where a vehicle can execute most or all driving operations without human intervention. As more people are willing to use and invest in completely autonomous vehicles, the market grows.
Technological advancement is driven by the evolution of various levels of automation. Artificial intelligence, sensor technologies, computing power and communication advancements are required to achieve increased levels of autonomy. The technology advancement propels the autonomous vehicle market further by allowing for the development of more complex self-driving capabilities.
Most automobiles are equipped with only standard ADAS features, but considerable advancements in AD capabilities are on the horizon. Vehicles will eventually accomplish Society of Automotive Engineers (SAE) Level 4 (L4) or driverless control under specific conditions. An increase in demand for AD systems has the potential to generate billions of dollars in revenue. Vehicles with lidar-based Level 2+ (L2+) capabilities cost between US$ 1,500 to US$ 2,000 in component prices and automobiles with Level 3 (L3) and L4 options cost considerably more.
ADAS technology such as adaptive cruise control, lane-keeping assistance and automatic emergency braking serve as the foundation for autonomous systems. It introduces users to automation gradually, improving their knowledge and comfort with self-driving technologies. ADAS elements are primarily intended to increase road safety.
The future of driverless vehicles will have a variety of Advanced Driving Assistance Systems to assist motorists in maximizing driving safety. The electronic systems improve as a result of ADAS advancement and many data sources, including radar, LiDAR, image sensors and computer vision. ADAS features include adaptive cruise control, pedestrian detection and parking assistance. According to the National Safety Council, ADAS technologies can save up to three lives each year or 62% of all road fatalities.
Several governments are enacting regulations to govern the testing and deployment of self-driving vehicles. The rules are intended to define AV safety requirements, operating procedures and liability frameworks. Governments are also encouraging R&D in the AV sector through grants and funding schemes in order to foster innovation while maintaining safety.
Automobile manufacturers and technology companies engaged in AV development have to adhere to high safety requirements established by numerous organizations and regulatory bodies. Standards established by organizations such as the IIHS, ICAT, NCAP and others aid manufacturers in designing vehicles that fulfill specified safety requirements such as crashworthiness, crash avoidance and other aspects of safety.
As AVs become more focused on networking, AI and other software services, players must invest heavily in cybersecurity features and support. It could include setting in place robust authentication and encryption mechanisms, firewalls and intrusion detection systems and distributing security patches and updates on a regular basis. Cybersecurity is an important part of the AV industry since it assures the safety of both passengers and cars. Furthermore, AV companies must consider the varied consumer preferences and cultural characteristics of each market. It could imply tailoring marketing campaigns and communication tactics to regional preferences.
Autonomous vehicles pose significant liability concerns. Liability in an accident can be difficult to determine because it may involve the car manufacturer, software developers, sensor and hardware providers and even the vehicle owner or operator. The absence of a defined liability framework could lead to legal uncertainty and discourage market players.
To ensure the safety of autonomous technology, stringent testing and validation processes are required. The industry has hurdles in undertaking extensive and diversified testing to demonstrate the reliability and safety of the technology. To address these concerns and foster market growth, players in the autonomous vehicle sector, such as manufacturers, regulators and technology developers, must collaborate to define clear safety standards, liability frameworks and robust testing protocols.
The global autonomous/self-driving cars market is segmented based on vehicle, level of automation, application and region.
Fully autonomous cars can run continuously without stopping for rest, resulting in greater operational efficiency. Companies that use Level 4 autonomous vehicles may conserve cost on labor and boost productivity. Level 4 autonomy allows cars to function in particular situations or environments without constant human supervision. Because there is less need for human interaction, operational efficiency improves by eliminating human errors and enhancing the vehicle's capacity to operate safely and effectively.
For instance, in May 2023, A 200km test run was completed using a Level 4 autonomous driving system developed by Samsung. According to reports, SAIT (Samsung Advanced Institute of Technology) completed a "driver-free" test from Suwon to Gangneung in South Korea. Therefore, above development and factor drives the growth of the level 4 automation segment in global market and accounts for the significant shares in the global market.
Robust R&D investments are supporting breakthroughs in autonomous car technologies. Companies in U.S. are pioneering the development of cutting-edge technologies essential to obtaining increased degrees of autonomy, with a focus on safety, dependability and real-time ability to make decisions.
North America is at the leading edge of technical innovation, with numerous corporations investing extensively in self-driving car development. Tesla, Alphabet's Waymo, Uber and traditional manufacturers are driving the market along with continually enhancing AI, sensor technology and connection solutions. As a result, the market in North America is expected to increase the highest throughout the forecast period.
Because lockdowns and social distancing measures precluded outdoor testing and collaborative efforts among teams working on self-driving technology, the epidemic impacted autonomous car research, development and testing. While some consumers embraced the thought of self-driving cars as a method to limit contact with people, others voiced reservations about the safety of autonomous technology, which could have an impact on long-term market acceptability.
The global autonomous/self-driving cars industry was influenced by the COVID-19 epidemic in two ways: it accelerated the deployment of self-driving technology for contactless services while also posing challenges in terms of testing, supply networks and regulatory changes. The market continues to evolve as the world adjusts to the post-pandemic scenario, with a combination of positive and negative influences affecting its direction.
The protracted conflict has increased geopolitical tensions between Russia, Ukraine and Western nations. Economic sanctions have resulted, as have strained international ties. Global investments and collaborations, which are critical for the development and deployment of self-driving technology, can be harmed by such geopolitical uncertainty.
Ukraine has long been an important center for technology-related manufacturing, including hardware components required in self-driving cars. Because of the conflicts, supply networks have been disrupted, increasing concerns about the availability of critical components. The has had an impact on the production timelines and costs of self-driving technologies.
The major global players in the market include: Daimler AG, Waymo LLC (Google Inc.), Toyota Motor Corp, Nissan Motor Co. Ltd, Volvo Car Group, General Motors Company, Volkswagen AG, Tesla Inc., BMW AG Source and Aurora Innovation Inc.
The global autonomous/self-driving cars market report would provide approximately 61 tables, 57 figures and 188 Pages.
LIST NOT EXHAUSTIVE