Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1382522

Cover Image

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1382522

Global Electric Pump Drives Market - 2023-2030

PUBLISHED:
PAGES: 205 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 4350
PDF & Excel (Multiple User License)
USD 4850
PDF & Excel (Enterprise License)
USD 7850

Add to Cart

Overview

Global Electric Pump Drives Market reached US$ 32.2 billion in 2022 and is expected to reach US$ 47.2 billion by 2030, growing with a CAGR of 4.8% during the forecast period 2023-2030.

Governments and regulatory bodies globally are implementing energy efficiency standards for various equipment, including pumps. For instance, the European Union has introduced the Ecodesign Directive, which sets minimum efficiency requirements for electric pumps sold in the EU market. The regulation has led to a significant increase in the adoption of energy-efficient electric pump drives to meet the compliance standards.

Asia-Pacific countries such as China, India and South Korea have witnessed rapid industrialization in recent years, accompanied by significant developments, investments and initiatives focused on sustainable growth. For instance, in China, the government has implemented initiatives like "Made in China 2025" and "Green Manufacturing" to drive sustainable industrial development.

Moreover expanding industrial base in the Asia-Pacific has contributed to its dominance in the electric pump drive market. With the growing emphasis on productivity and energy efficiency, water and waste water treatments, businesses in these countries are actively adopting electric pump drives to optimize their operations and minimize energy consumption.

According to the report given by NITI Aayog India's wastewater treatment plants market stood at US$2.4 billion in 2019 and is projected to reach US$4.3 billion by 2025 owing to increasing demand for municipal water as well as sewage water treatment plants across the country. The initiatives aim to promote the use of advanced technologies, including energy-efficient equipment such as electric pump drives, to improve productivity while reducing environmental impact.

Dynamics

Increasing Emphasis on Energy Efficiency

There is a growing global focus on energy conservation and sustainability. Electric pump drives offer significant energy savings compared to traditional pump systems. According to a report by the International Energy Agency (IEA), electric motors used in pumps account for approximately 20% of global electricity consumption.

Adopting energy-efficient electric pump drives can lead to substantial energy savings. Studies have shown that these drives can deliver energy savings ranging from 20% to 60% compared to conventional pump systems, as reported by U.S. Department of Energy. Additionally, according to the report given by Schneider Electric, variable frequency drives (VFDs), which are a type of electric pump drives, can achieve energy savings of up to 30% in pumping applications.

The drives enable precise control of motor speed, allowing pumps to operate at optimal levels, reducing energy consumption and minimizing wastage. As energy costs continue to rise and environmental concerns escalate, industries across various sectors are increasingly adopting electric pump drives to enhance energy efficiency, lower operational costs and reduce carbon footprint. The driver is expected to propel the demand for electric pump drives in the coming years.

Increasing emphasis on industrial automation and digitization

Electric pump drives offer numerous benefits in automated systems. It enable remote control and monitoring capabilities, allowing operators to adjust pump performance from a central control room. The level of automation not only enhances operational efficiency but also reduces the need for manual intervention, leading to cost savings and improved safety. Moreover, electric pump drives are compatible with advanced technologies such as Industrial Internet of Things (IIoT) and data analytics.

By integrating electric pump drives with IIoT platforms, industries can gather real-time data on pump performance, energy consumption and maintenance needs. The data-driven approach enables predictive maintenance, optimized energy usage and proactive decision-making to maximize overall system efficiency. Furthermore, the ongoing advancements in electric pump drive technology, such as the development of compact and efficient designs, variable frequency drives (VFDs) and intelligent motor control algorithms, further drive the market growth.

Moreover, technological innovations enhance the capabilities and flexibility of electric pump drives, making them increasingly attractive to industries seeking to improve their automation infrastructure. Considering these factors, the driver of the electric pump drive market lies in the growing adoption of automation and the need for precise control and efficiency in industrial processes. As industries strive for enhanced productivity and operational excellence, electric pump drives provide the necessary tools to achieve these goals, propelling the market forward.

Increasing Focus on Renewable Energy Sources

The global shift towards renewable energy sources presents a significant opportunity for the electric pump drives market. Renewable energy technologies such as solar and wind power require efficient pumping systems for various applications, including water circulation, cooling and fluid transfer. Electric pump drives play a crucial role in optimizing the performance of these systems by providing precise control and efficient operation.

The International Renewable Energy Agency (IRENA) reports that global renewable energy capacity reached 3,372 GW in 2022, representing a year-on-year increase of 9.6%. Similarly, according to the American investment bank, the renewable energy sector to garner around US$ 250 billion in investments over the next decade. The significant growth in renewable energy installations translates into a rising demand for efficient pumping systems that can be facilitated by electric pump drives.

High Initial Investment and Presence of Competing Technologies or Alternative Solutions

Electric pump drives typically have a higher upfront cost compared to traditional pump systems. The initial cost of an electric pump drive will range from US$ 200. The high cost can be a barrier to adoption, particularly for small and medium-sized enterprises (SMEs) or organizations with limited budgets. The higher upfront investment is primarily attributed to several factors. Firstly, electric pump drives incorporate advanced technology and components, such as variable frequency drives (VFDs) or servo drives, which enable precise control and energy efficiency. The technologies often come at a higher cost compared to conventional pump systems. Hence these higher cost create for SMEs and acts as a restraint for electric pump drive market.

In addition to this presence of competing technologies and alternative solutions are analyzed to create challenges for the market. For instance, hydraulic and pneumatic systems can be preferred over electric pump drives in specific applications. Hydraulic systems provide high power density and are ideal for heavy-load industrial applications, while pneumatic systems are chosen for their simplicity and cost-effectiveness in certain scenarios.

Additionally, emerging technologies or alternative solutions may pose competition to electric pump drives. For instance, the development of advanced digital control systems or the rise of smart and automated solutions in the pump industry could present viable alternatives to traditional electric pump drives. Factors as such can lead to market fragmentation and a potential slowdown in the adoption of electric pump drives, especially if customers perceive other solutions to be more suitable for their needs.

Segment Analysis

The global electric pump drives market is segmented based on type, drive, power rating, end-user and region.

Rising Demand For Variable Frequency Drives across various industries

Variable Frequency drives (VFDs) are the dominant type of electric pump drives, holding a major share in the market. VSDs/VFDs offer adjustable speed control for pumps, making them highly versatile and widely used in various industries and applications. The significant market size can be attributed to the numerous advantages of VSDs/VFDs.

One of the key advantages is their energy efficiency. VSDs/VFDs enable energy savings by matching pump speed and power consumption to the required demand. The ability to adjust motor speed to optimal levels helps reduce energy consumption, making them attractive for industries aiming to improve energy efficiency and reduce operational costs.

Additionally, the precise control capabilities of VSDs/VFDs allow for optimized process performance, leading to improved productivity and system efficiency. Its wide application range across industries such as water and wastewater treatment, HVAC systems, manufacturing and oil and gas further contributes to their dominant market share. Overall, the data and market projections indicate that VSDs/VFDs are the preferred choice in the electric pump drives market, holding a significant position due to their energy-saving capabilities, process optimization features and widespread applicability.

Geographical Penetration

Rising Demand and Government Initiatives Propel Asia-Pacific as the Leading Market for Electric Pump Drives

Asia-Pacific has dominated electric pump drive market, owing to the rising demand from industries such as manufacturing, construction, water management and so on have contributed to the increased demand for electric pump drives. Asia-Pacific countries like China, India and South Korea have been experiencing rapid industrialization and urbanization, creating a substantial market for efficient pumping systems.

China, in particular, has emerged as a major player in the electric pump drive market due to its expanding industrial base and government initiatives promoting energy efficiency. Moreover, the Indian government's "Make in India" campaign and its focus on smart cities and infrastructure development have also contributed to the increased adoption of electric pump drives in the country.

Further growing investments in green energy or renewable energy segment also contribute to the growth of electric pump drive market. For instance, in 2023, Global energy firm Octopus Energy has set a medium-term plan to invest US$ 1.7 billion in the Asia-Pacific energy market. In addition the company intends to invest US$ 1.4 billion into solar and wind generation across the region.

Competitive Landscape

major global players include: Siemens AG, Eaton Corporation, ABB Ltd, Schneider Electric SE, Danfoss Group, Rockwell Automation, Inc., Emerson Electric Co., Mitsubishi Electric Corporation, Yaskawa Electric Corporation, Toshiba Corporation.

COVID-19 Impact Analysis

The global supply chain experienced disruptions due to lockdowns, restrictions and transportation challenges. The resulted in delays in the production and delivery of electric pump drive components and equipment. Manufacturers and suppliers experienced difficulties in sourcing necessary materials and fulfilling orders, leading to reduced production and supply.

However, As people spent more time at home during lockdowns, there was an increased interest in home improvement projects. The led to a surge in demand for upgrading water systems and implementing more efficient pump drives. Thus the pandemic had both positive and negative impacts on the market and reducing COVID-19 cases globally is expected to regain the market momentum in the forecast period.

Russia- Ukraine War Impact

The ongoing Russia-Ukraine conflict can have a significant impact on the electric pump drive market in a similar manner to other industries. The ongoing conflict and resulting economic instability in the region can create uncertainties and disruptions in trade and commerce, affecting consumer confidence and purchasing power.

As businesses and industries face uncertainties during times of conflict, there may be a cautious approach towards investments and capital expenditure, including the implementation or upgrade of electric pump drive systems. Industries that heavily rely on electric pump drives, such as manufacturing, construction, water management and oil and gas, may prioritize essential needs and critical infrastructure maintenance over non-essential investments.

By Type

  • Centrifugal Pump Drives
  • Positive Displacement Pump Drives
  • Submersible Pump Drives
  • Others

By Drive

  • Direct Drive
  • Belt Drive
  • Gear Drive
  • Variable Frequency Drive (VFD)
  • Servo Drive
  • Others

By Power Rating

  • Up to 100 KW
  • 100 - 500 KW
  • Above 500 KW

By End-User

  • Water and Wastewater
  • Oil and Gas
  • Chemical and Petrochemical
  • Agriculture
  • Construction
  • Manufacturing
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On May 15, 2023, Siemens has launched a new servo drive system Sinamics S200, designed for a variety of standard applications in the battery, electronics as well as other industries. It consists of a precise servo drive, powerful servo motors and easy-to-use cables and offers high dynamic performance
  • On March 30, 2023, ABB has launched a medium-voltage VFD (Variable-frequency Drive) with a rated capacity of 400 to 1,000kV and a voltage of up to 6.9kV, which is suitable for a wide range of applications without special engineering design.
  • On March 9, 2022, WEG is a Brazilian electronic equipment company, launched its new CFW900 variable speed drive (VSD) at the Drives & Controls 2022 exhibition held in Birmingham, UK.

Why Purchase the Report?

  • To visualize the global electric pump drives market segmentation based on type, drive, power rating, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of electric pump drives market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global electric pump drives market report would provide approximately 69 tables, 72 figures and 205 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies
Product Code: ICT7437

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Type
  • 3.2. Snippet by Drive
  • 3.3. Snippet by Power Rating
  • 3.4. Snippet by End-User
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Increasing Emphasis on Energy Efficiency
      • 4.1.1.2. Increasing Focus on Renewable Energy Sources
    • 4.1.2. Restraints
      • 4.1.2.1. High Initial Investment
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 7.1.2. Market Attractiveness Index, By Type
  • 7.2. Centrifugal Pump Drives
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Positive Displacement Pump Drives
  • 7.4. Submersible Pump Drives
  • 7.5. Others

8. By Drive

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Drive
    • 8.1.2. Market Attractiveness Index, By Drive
  • 8.2. Variable Frequency Drive*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Servo Drive
  • 8.4. Belt Drive
  • 8.5. Gear Drive
  • 8.6. Direct Drive
  • 8.7. Others

9. By Power Range

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Power Range
    • 9.1.2. Market Attractiveness Index, By Power Range
  • 9.2. Up to 100 Kw*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. 100 kw to 500 Kw
  • 9.4. Above 500 Kw

10. By End-User

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.1.2. Market Attractiveness Index, By End-User
  • 10.2. Oil and Gas
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Water and Wastewater
  • 10.4. Chemicals and Petrochemical
  • 10.5. Power Generation
  • 10.6. Agriculture
  • 10.7. Construction
  • 10.8. Manufacturing
  • 10.9. Others

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Drive
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Power rating
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. U.S.
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Drive
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Power rating
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Russia
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Drive
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Power rating
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1. Brazil
      • 11.4.7.2. Argentina
      • 11.4.7.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Drive
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Power rating
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Drive
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Power rating
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. Siemens AG*
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Recent Developments
  • 13.2. Eaton Corporation
  • 13.3. ABB Ltd
  • 13.4. Schneider Electric SE
  • 13.5. Danfoss Group
  • 13.6. Rockwell Automation, Inc.
  • 13.7. Emerson Electric Co.
  • 13.8. Mitsubishi Electric Corporation
  • 13.9. Yaskawa Electric Corporation
  • 13.10. Toshiba Corporation

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!