Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1374873

Cover Image

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1374873

Global Emission Control Catalysts Market - 2023-2030

PUBLISHED:
PAGES: 185 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 4350
PDF & Excel (Multiple User License)
USD 4850
PDF & Excel (Enterprise License)
USD 7850

Add to Cart

Overview

The global emission control catalysts market reached US$ 14.3 billion in 2022 and is expected to reach US$ 33.9 billion by 2030 growing with a CAGR of 10.5% during the forecast period 2023-2030.

The global emission control catalysts market is driven by an increase in demand from various sectors such as oil, gas and chemical sectors. Using control catalyst materials improves air quality by reducing pollution. The catalyst works well in the polluted area where a higher level of pollution emits leading to increases in the demand for control catalysts.

Some emissions are produced by EVs, such as brake wear-related particulate matter. Urban air quality may be enhanced by reducing these emissions through the use of emission control catalysts. Short-distance driving is a common application for EVs, which might result in cold starts. Given that the engine is not yet operating at its ideal temperature, cold starts are especially harmful to the environment.

During cold starts, emissions can be decreased with the use of emission control catalysts. EVs and renewable energy sources, such as solar and wind power, are frequently combined. It may contribute to lowering transportation's overall carbon impact. Renewable energy sources do not, however, always generate electricity when it is needed since they are intermittent. The grid may become unstable as a result of this.

Europe holds a major share of the global emission control catalysts market and countries like Germany, UK and France cover more than 60.5% at the regional level. The regional growth is due to stringent emission regulations implemented by the European Union (EU) such as Euro standards, which have driven the adoption of emission control catalysts in the automotive and industrial sectors.

Dynamics

Stringent Government Regulations Imposed By Various Countries To Curb Pollution

Governments globally are implementing stringent rules and regulations to address air pollution caused by vehicles. For instance, China has implemented a national emission series known as China 5 and China 6. On Dec 2016 China 5 standards were implemented for light-duty vehicles. China 6 implemented for both gasoline and diesel vehicles. One of the major standards taken by the Chinese government leads to the growth of the emission control catalysts market across the region.

Furthermore, to reduce pollution caused mainly by vehicles India has adopted Bharat Stage (BS) Emission standards in which standards are applied by 2000. But in April 2020 the standard BS-4 changed to BS-6 with similar norms as Euro-6 norms. BS standards are implemented to control the pollution released from vehicle exhaust systems.

Growing Role of Emission Control Catalysts in Electric Vehicles

The growing factor in emission control catalysts is the adoption of electric vehicles and hybrid vehicles. As the world shifts towards clean energy and more sustainable transport the demand for electric vehicles increases. The electric vehicles produce low emissions when compared to other traditional vehicles. But they still have to acquire an emission control system but the requirement is less.

As emission control plays a very important role in reducing emissions generated by electric vehicles. Catalysts used in this electric vehicle minimize the pollution released from their batteries. Catalysts in electric vehicle reduce 95% of carbon which make them environmentally friendly. It not only reduces carbon but due to advancements in technology, it increases their performance.

High Cost of Catalyst Technology

The increase in cost is the main reason for the downfall of the emission control market. With this higher cost of catalyst technology, it will be difficult for small businesses to adopt this technology. Maintenance costs are higher when associated with some organizations. Advanced catalyst technology offers higher efficiency which results in an increment in cost.

Emission control catalysts require time-to-time maintenance and replacements which increases expense. As this technology does not provide any financial results which leads to some loss in investments. Collaboration with stakeholders and research institutes for finding cost-effective solutions for implementing control catalysts.

Segment Analysis

The global emission control catalysts are segmented based on type, application and region.

Growing Demand For Emission Control Catalysts With High Catalyst Activity Under Low Temperatures

Pallidum is a type of emission control catalyst that belongs to a group of precious metals that holds more than 48.2% share globally. Pallidum is used particularly in the automobile industry. Pallidum catalysts use carbon monoxide and hydrocarbon which converts it into less effective gas such as carbon dioxide. By using this catalyst, it reduces the nitrogen oxides through some selective process.

There are different advantages of palladium catalysts one of the major advantages is its high catalyst activity which it shows under low temperatures. In vehicles, the pallidum catalysts are used to work as a converter which is installed in the exhaust system. The converter contains a thin layer of nanoparticles, when gas passes through a catalyst converter it converts pollutants into less harmful gas.

Geographical Penetration

Asia-Pacific's Growing Automotive Sector And Environmental Regulations

Asia-Pacific has one of the largest automotive sectors which has made the region cover 1/3rd of the global emission control catalysts market. Due to an increase in population people are moving towards more urbanization which increases the demand for the automotive sector. When the demand increases for the automobile industry simultaneously the demand for emission control catalysts also increases. Particularly in China and India, there is an expansion in this industry.

The government is implementing various policies and environmental regulations to control air pollution in the region. To regulate air pollution caused by vehicles the government of India imposed emission standards as BS6 and BS5 from 1 April 2020. The government also announced BS6 norms for L7 categories and this announcement was approved by the Ministry of Road and Highway.

Competitive Landscape

The major global players in the market include: CL International Inc., Ecocat India Pvt Ltd., Heraeus Holding GmbH, Hitachi Zosen Corporation, HJS Emission Technology GmbH & Co. KG, Ibiden Co., Ltd., Interkat Catalyst GmbH, Johnson Matthey, Klarius Products Ltd, Kunming Sino-Platinum Metals Catalyst Co. Ltd.

COVID-19 Impact Analysis

Globally pandemic hit the majority of the markets. The automobile industry is the major consumer of control catalysts. Due to COVID-19 automobile manufacturers shut their production which leads a major loss in the industry. The pandemic restricted supply chain management. The delays in the production of materials impacted the market.

Due to travel restrictions and lockdowns the delivery of raw materials got delayed. With fewer vehicles on the road, the demand for emission catalysts goes down. During the pandemic, government and businesses focus more on public health, so priorities towards other sectors are falling.

Russia-Ukraine War Analysis

The Russia-Ukraine war had a major impact on the availability of raw materials and components used in emission control catalysts. Russia and Ukraine play a major role in producing raw materials and due to the war, there are huge disruptions in supply chains like transport disruption and trade disruption leading to economic instability.

Furthermore, due to the Russia-Ukraine war manufacturing operations are disrupted. Labor shortage, infrastructure damage and financial instability hinder manufacturing operations. The disruptions cause the production of the emission control system to temporarily shut down. The impacts made the market economy unstable.

By Type

  • Palladium
  • Rhodium
  • Platinum
  • Others

By Application

  • Mobile Source
  • Stationary Source

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On 20 April 2023, Atlanta, GA announced new options for emission reduction technologies which were available for aero derivatives gas turbines and deployed at the Department of Water Resource site at the Yuba site.
  • On 5 July 2021, BASF Catalyst at Chennai provided automotive emission catalyst solutions for passenger vehicles and commercial vehicles. The solution is cost-effective and its demand increases due to its high performance.
  • On 19 May 2023, At the China battery fair Shanshan Battery Materials launched a customized cathode materials and recycling solution which led to an et-zero future for electromobility.

Why Purchase the Report?

  • To visualize the global emission control catalysts market segmentation based on type, application and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of emission control catalysts market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key Applications of all the major players.

The global emission control catalysts market report would provide approximately 53 tables, 46 figures and 185 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies
Product Code: CH3328

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet By Type
  • 3.2. Snippet By Application
  • 3.3. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Growing Shift Towards Sustainable Technologies
      • 4.1.1.2. Stringent Government Regulations Imposed By Various Countries To Curb Pollution
      • 4.1.1.3. Growing Role of Emission Control Catalysts in Electric Vehicles
    • 4.1.2. Restraints
      • 4.1.2.1. High cost of catalyst technology
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers' Strategic Initiatives
  • 6.6. Conclusion

7. By Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 7.1.2. Market Attractiveness Index, By Type
  • 7.2. Palladium*
    • 7.2.1. Market Size Analysis and Y-o-Y Growth Analysis (%)
    • 7.2.2. Market Attractiveness Index
  • 7.3. Rhodium
  • 7.4. Platinum

8. By Application

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2. Market Attractiveness Index, By Application
  • 8.2. Mobile Source*
    • 8.2.1. Market Size Analysis and Y-o-Y Growth Analysis (%)
    • 8.2.2. Market Attractiveness Index
  • 8.3. Stationary Source

9. By Region

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 9.1.2. Market Attractiveness Index, By Region
  • 9.2. North America
    • 9.2.1. Introduction
    • 9.2.2. Key Region-Specific Dynamics
    • 9.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 9.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.2.5.1. U.S.
      • 9.2.5.2. Canada
      • 9.2.5.3. Mexico
  • 9.3. Europe
    • 9.3.1. Introduction
    • 9.3.2. Key Region-Specific Dynamics
    • 9.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 9.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.3.5.1. Germany
      • 9.3.5.2. UK
      • 9.3.5.3. France
      • 9.3.5.4. Italy
      • 9.3.5.5. Spain
      • 9.3.5.6. Rest of Europe
  • 9.4. South America
    • 9.4.1. Introduction
    • 9.4.2. Key Region-Specific Dynamics
    • 9.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 9.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.4.5.1. Brazil
      • 9.4.5.2. Argentina
      • 9.4.5.3. Rest of South America
  • 9.5. Asia-Pacific
    • 9.5.1. Introduction
    • 9.5.2. Key Region-Specific Dynamics
    • 9.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 9.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.5.5.1. China
      • 9.5.5.2. India
      • 9.5.5.3. Japan
      • 9.5.5.4. Australia
      • 9.5.5.5. Rest of Asia-Pacific
  • 9.6. Middle East and Africa
    • 9.6.1. Introduction
    • 9.6.2. Key Region-Specific Dynamics
    • 9.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 9.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

10. Competitive Landscape

  • 10.1. Competitive Scenario
  • 10.2. Company Share Analysis
  • 10.3. Key Developments and Strategies

11. Company Profiles

  • 11.1. CL International Inc.*
    • 11.1.1. Company Overview
    • 11.1.2. Product Portfolio and Description
    • 11.1.3. Financial Overview
    • 11.1.4. Key Developments
  • 11.2. Ecocat India Pvt Ltd.
  • 11.3. Heraeus Holding GmbH.
  • 11.4. Hitachi Zosen Corporation.
  • 11.5. HJS Emission Technology GmbH & Co. KG.
  • 11.6. Ibiden Co., Ltd.
  • 11.7. Interkat Catalyst GmbH
  • 11.8. Johnson Matthey
  • 11.9. Klarius Products Ltd
  • 11.10. Kunming Sino-Platinum Metals Catalyst Co. Ltd.

LIST NOT EXHAUSTIVE

12. Appendix

  • 12.1. About Us and Services
  • 12.2. Contact Us
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!