PUBLISHER: DataM Intelligence | PRODUCT CODE: 1373403
PUBLISHER: DataM Intelligence | PRODUCT CODE: 1373403
Nuclear imaging technology, commonly referred to as nuclear medicine imaging equipment, is a highly developed imaging instrument used in the field of nuclear medicine to observe and evaluate numerous physiological structures and processes within the human body. These devices provide images of inside organs, tissues, and physiological processes using minute quantities of radioactive substances (radiotracers or radiopharmaceuticals).
Nuclear imaging technology is essential for the detection and monitoring of a number of illnesses, such as cancer, heart disease, neurological problems, and abnormalities of the bones. The equipment selected relies on the particular clinical application and the data that healthcare professionals need. These machines, which are used by qualified radiologists and nuclear medicine technologists, are essential to contemporary healthcare.
As of June 2023, Serac Imaging Systems, a UK-based firm, developed a portable high-resolution hybrid gamma optical camera, which is currently undergoing clinical trials in the United States. The Seracam imaging device trial is anticipated to involve 25 participants and last about six months. The Ohio State University Wexner Medical Center is the second location to start an investigator-sponsored study to compare gamma images obtained using Seracam with those captured using a current state-of-the-art gamma camera for nuclear medical imaging, from the same patient on the same day, following testing in Kuala Lumpur, Malaysia.
The device uses radiation to scan radioisotopes, which are given to the patient, in a manner similar to that used in satellites used in X-ray astronomy, which was first created by the University of Leicester. This exposes details on how the body functions, such as whether there are any blockages.
As per the article published in the European Journal of Nuclear Medicine and Molecular Imaging in 2023, the newest PET/MRI systems, such as those with silicon photomultiplier (SiPM) detectors and time of flight (TOF) capabilities, offer sensitivity levels that are higher than those of traditional devices. Additionally, MRI technology developments like synthetic MRI and fingerprinting technologies, together with artificial intelligence reconstruction approaches, have a lot of potential for use in research settings. These advancements may shorten the time it takes for an MRI to acquire data while still enabling functional and anatomical imaging.
However, it is crucial to keep in mind that the imminent introduction of a new generation of PET/MRI devices will transform the scene. These new systems are anticipated to have a number of improvements, including improved MRI systems using bigger magnets and larger diameter bores, wider axial coverage, and hence increased PET sensitivity. Additionally, these new devices will come with specialized AI software developed to speed up clinical throughput using cutting-edge imaging sequences. Shorter acquisition periods (25-30 min) and increased MRI sensitivity will follow from this.
Healthcare facilities must make a substantial upfront capital investment in nuclear imaging equipment like PET and SPECT scanners. This price covers the cost of the imaging system itself, installation, and any infrastructure alterations required to make room for the apparatus. Nuclear imaging equipment includes ongoing maintenance and operational expenditures in addition to the initial purchase. To ensure the accuracy and dependability of the equipment, this also includes routine servicing and calibration.
The use of radiopharmaceuticals in nuclear imaging procedures raises the overall cost even if they are not a part of the equipment cost. The price of radiopharmaceuticals can be high and varies according to the particular tracer that is employed.
During nuclear imaging operations, radioactive substances known as radiopharmaceuticals or tracers are used. These substances generate ionizing radiation. The removal of strongly bonded electrons from atoms by ionizing radiation has sufficient energy to possibly harm biological tissues. When the radiopharmaceutical is administered to patients undergoing nuclear imaging, they are exposed to ionizing radiation.
Depending on the procedure type and the particular radiopharmaceutical employed, different radiation exposure levels apply. Although the risk is normally modest, there is still some risk involved. Patients may experience many nuclear imaging treatments throughout time, particularly if they have ongoing medical issues that need to be monitored. Radiation exposure over time might be a worry, especially for people who have imaging frequently.
The global nuclear imaging equipment market is segmented based on product, application, end-user and region.
As per the Article published in Stat Pearls in 2023, PET/CT (positron emission tomography) is a commonly utilized nuclear medicine imaging method used to examine the staging, therapy response, or recurrence of many malignancies. In addition to mammography, which is still the primary imaging test for identifying and screening cancer, other secondary imaging modalities include ultrasound, MRI, and, under some circumstances, PET/CT. This activity examines the use of PET/CT as an additional imaging technique for the evaluation of breast cancer patients. Furthermore, the interprofessional team's use of PET/CT in the context of breast cancer is highlighted in this activity, along with the indications, imaging method, patient preparation, and use of PET/CT.
The physiological and biochemical information offered by PET is greatly enhanced by the anatomical information provided by CT. It is possible to acquire fused pictures with the combined information on a single screen and to blend from one to the other by modifying the 922 (color) scales thanks to the 919 combining of the two modalities into PET/CT by positioning the two system gantries on a 920 common axis and with a common patient bed.
North America has been a dominant force in the global nuclear imaging equipment market. Nuclear imaging technology is constantly improving, resulting in more accurate and effective imaging, which has fueled market expansion. Particularly common hybrid imaging technologies are PET/CT and PET/MRI, which are used for diagnosis. For instance, in June 2023, at the 2023 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI), GE HealthCare plans to introduce SIGNA PET/MR AIR[i]. The business will demonstrate how its cutting-edge AIR technologies may be integrated with the SIGNA PET/MR AIR system to improve diagnostic accuracy, streamline therapy evaluation, and improve patient comfort.
The need for dependable and comprehensive imaging solutions across the patient care journey is highlighted by recent FDA approvals of innovative PET radiotracers and therapeutic methods for high-prevalence disorders like prostate cancer and Alzheimer's Disease. SIGNA PET/MR AIR incorporates distinct GE HealthCare AIR technologies that respond to the changing needs of specific patient populations. These innovations include MotionFree Brain[ii], which reduces motion-related PET picture degradation, AIR Coils, which increases and improves patient comfort, AIR Recon DL, which improves MR image quality and enables scan time reduction, and AIR Coils.
The outbreak of the COVID-19 pandemic in late 2019 created unprecedented challenges for industries worldwide, including the global nuclear imaging equipment market. Many optional nuclear imaging scans and other non-essential medical procedures were delayed or stopped during the early stages of the pandemic in order to lower the risk of viral transmission and save money on medical services.
This resulted in a sharp decline in the number of nuclear imaging procedures, which had financial repercussions for healthcare facilities and nuclear imaging equipment producers. In order to deal with the increase in COVID-19 cases, healthcare organizations changed their focus. Due to this, healthcare workers, resources, and attention were diverted from tasks unrelated to COVID-19, such as nuclear imaging. Infrastructure developments and investments in new imaging technology were occasionally postponed or cancelled.
The major global players in the market include Siemens Healthcare GmbH, GE Healthcare, Philips Healthcare, Canon Medical Systems Corp, Serac Imaging Systems Ltd, Neusoft Medical Systems Co Ltd., DIGIRAD HEALTH, INC., Mediso Ltd., PerkinElmer, and MILabs B.V.
The global nuclear imaging equipment market report would provide approximately 61 tables, 61 figures and 186 Pages.
LIST NOT EXHAUSTIVE