Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1347949

Cover Image

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1347949

Global Packaging Robots Market - 2023-2030

PUBLISHED:
PAGES: 184 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 4350
PDF & Excel (Multiple User License)
USD 4850
PDF & Excel (Enterprise License)
USD 7850

Add to Cart

Overview

Global Packaging Robots Market reached US$ 5.7 billion in 2022 and is expected to reach US$ 14.6 billion by 2030, growing with a CAGR of 12.2% during the forecast period 2023-2030.

The global packaging robots market is expected to be driven by advancements in robotics technology, particularly in the field of machine vision and learning. The innovations have significantly improved the efficiency of end-of-line processes in various industries. Robots for more efficient pallet stacking, allowing for easier adaptation to different product types and configurations without extensive reprogramming. This trend is especially evident with the increasing use of collaborative robots in transport packaging, as their payload capacities continue to grow. This has enabled small and medium-sized enterprises to embrace robotics for end-of-line applications.

A substantial portion of consumer packaged goods companies have adopted robots for end-of-line packaging processes due to their versatility in handling diverse products and packaging patterns. Larger operations find robotics particularly valuable in this context. However, according to a survey conducted by PMMI Business Intelligence, growth in the adoption of packaging robots is projected to plateau in the near future. While 53% of surveyed CPGs currently use robots for end-of-line packaging, this number is expected to remain unchanged over the next five years.

Asia-Pacific is the largest region in the packaging robots market, particularly China, has firmly established itself as a major force in the packaging robotics industry, as evident from key statistics and developments. At the 2023 World Robot Conference in Beijing, Xin Guobin, China's vice minister of industry and information technology, highlighted the nation's significant advancements in the global robotics landscape.

China's robotics industry has reported remarkable revenue growth, surpassing 170 billion yuan (US$ 23.3 billion) in 2022. Moreover, China's dominance is reflected in its sales of industrial robots, accounting for over 50% of the world's total in 2022, making it the global leader for ten consecutive years.

Dynamics

Advancements Drive Packaging Robots Market

The global packaging robots market is expected to be driven by advancements and innovations in robotics technology, industries that prioritize accuracy, like pharmaceutical production, have employed robot-based solutions for labeling operations. These robots can visually inspect incoming bottles, print appropriate labels and apply them accurately, ensuring compliance with regulations and minimizing errors.

Also, the use of autonomous mobile robots (AMRs) for internal transport solutions is on the rise. These AMRs are adaptable, flexible and cost-efficient compared to traditional autonomous guided vehicles. With advanced sensors and AI-driven data, AMRs can navigate dynamic environments without the need for guided wiring or magnets, making them an increasingly popular choice for optimizing internal logistics.

According to Packaging Machinery Manufacturers Institutes 2022 report on robotics, the packaging robots market is witnessing rapid growth. In 2021, 82,000 AMRs were shipped and this number is projected to surpass 600,000 by 2025. AMRs offer advantages over traditional AGVs due to their adaptability, flexibility and cost-efficiency. These robots can navigate dynamic environments and transport various items, from raw materials to finished products. The integration of advanced sensors and AI-driven data enables AMRs to be easily redeployed and navigate facilities without the need for guided wiring or magnets.

Automation and Efficiency Drive Market Growth

The global packaging robots market is expected to be driven due to the growing demand for automation and efficiency in various aspects of the packaging industry. The robots are typically equipped with advanced sensors that allow them to detect changes in their surroundings. For instance, autonomous guided vehicles (AGVs) utilize LiDAR or computer vision to navigate through production facilities and warehouses. Inspection robots, such as those developed by Gecko Robotics, employ cameras and ultrasonic sensors to identify damage in industrial assets within packaging facilities.

On June 30, 2023, Mespack, a renowned manufacturer of innovative and sustainable flexible packaging solutions, unveiled its latest offering, the MCP series, designed for secondary packaging. This new series introduces automatic American box machines that are seamlessly integrated with a cutting-edge robotic picking system. Mespack specializes in providing integrated solutions for end-of-line production needs, catering to a diverse array of products ranging from cans, bottles, capsules and solid items to various types of flexible packaging. The company's secondary packaging solutions emphasize sustainability, particularly focusing on cardboard-based solutions which align with eco-friendly practices.

Articulated Robotics Shaping the Future of Packaging Automation

Articulated robots are majorly used in the packaging robot with finding extensive use due to their exceptional versatility and precision. These robots prove their mettle in standard applications across industries. Their prowess spans material handling, welding, assembly and machine tending. In material handling, they effortlessly manage tasks like palletizing, pick and place and bin-picking, leveraging their scalability to handle high payloads. Welding, a classic industrial application, benefits from their dexterity, enabling precise movements and angles for impeccable weld quality.

Industries spanning automotive, electronics, food and beverage, pharmaceuticals and more, recognize the power of articulated robots. Their ability to adapt and excel in various sectors stems from their unmatched versatility. Businesses contemplating automation often opt for articulated robots driven by factors like higher throughput requirements, safety concerns for human operators and the prospect of cost reductions.

Amazon has unveiled Sparrow, an innovative robotic system designed to streamline its fulfillment process by handling individual products before they are packaged, marking a significant advancement in their use of robotics. With a focus on automation and efficiency, Amazon's dedicated teams of experts have been investing in robotics and advanced technology to improve various aspects of their operations. Sparrow represents a breakthrough in item handling, being the first robotic system in Amazon's warehouses that can detect, select and handle individual products in their vast inventory.

High Initial Investment Impact on Packaging Robotics

The initial investment cost plays a crucial role in shaping the dynamics of the packaging robots market. It is often the primary factor that influences a company's decision to adopt robotic automation in their operations and it can significantly impact the overall growth of the market. For companies considering the implementation of robotic automation, the initial investment cost represents a major obstacle.

The decision to invest in this technology hinges on the ability to build a comprehensive business case that justifies the expenditure. While the potential returns from automation can be substantial and may materialize relatively quickly, the key challenge lies in ensuring sustainable cash flow during the initial phase of adoption. Companies need to weigh the benefits against the financial stability of their operations, as marginal returns may not justify the associated risks.

Segment Analysis

The global packaging robots market is segmented based on gripping, application, end-user and region.

The palletizing operations hold the largest application segment in the packaging robots market, as integration of robotics in palletizing offers several advantages, including precise control, faster handling and normative palletizing. For instance, MMCI manufactured and developed a multi-functional robotic palletizing system. This system was designed to handle multiple production lines efficiently, saving valuable floor space and reducing equipment costs. The system utilized a six-axis Fanuc robot with a custom multi-functional end-of-arm tool. This tool was engineered to perform various tasks to facilitate palletizing.

In the ever-evolving landscape of automation, CMES Robotics is revolutionizing palletizing processes with an innovative solution in collaboration with Yaskawa Motoman. The introduction of a fully automated mixed-case palletizing system marks a significant advancement in streamlining complex tasks. This pioneering solution is designed to tackle the challenges of handling diverse and randomly sized cases without the necessity for pre-deployment training. In the packaging industry, products often come in diverse shapes and sizes. This solution's ability to handle complex random cases without prior training makes it highly versatile.

Geographical Penetration

Asia-Pacific's Dominance in Packaging Robotics: Policy-Driven Growth and Global Impact

Asia-Pacific is the largest region in the packaging robots market, particularly China which has emerged as a major hub for the packaging robotics industry with significant growth and investments, which are driven by government policies and initiatives. China has positioned itself as a global leader in manufacturing by leveraging technology, automation and robotics. The country's policies such as the National High-Tech R&D program, Made in China 2025 and the Robotic Industry Development Program have played a crucial role in promoting the modernization of its manufacturing sector. The initiatives have led to a remarkable increase in the adoption of industrial robots.

The impact of China's demand for industrial robots is substantial, as the country has become the largest importer of industrial robots globally. This demand has influenced major robotics manufacturers, including those from Japan and Europe, to invest in partnerships and manufacturing facilities within China. The growth of China's domestic robotics industry is also evident, with thousands of firms competing in the market and a significant increase in sales of domestic robots.

The official data from the Ministry of Industry and Information Technology reveals that China's production of industrial robots continues to surge, with 222,000 units produced in the first half of a particular year, reflecting a 5.4% year-on-year increase. This growth trend confirms China's status as the world's fastest-growing robotics market, according to the International Federation of Robotics. The rapid expansion of robotics installations is enabling China to effectively address labor force challenges while bolstering its manufacturing capabilities.

Competitive Landscape

The major global players in the market include: ABB Robotics, Fanuc Corporation, KUKA Robotics, Yaskawa Electric Corporation, Universal Robots, Mitsubishi Electric Corporation, Kawasaki Robotics, Comau Robotics, Staubli Robotics and Omron Corporation.

COVID-19 Impact Analysis

The packaging robotics industry has been significantly impacted by various factors, with two major drivers being the COVID-19 pandemic and advancements in technology. The COVID-19 pandemic has played a pivotal role in accelerating the adoption of robotics within the packaging sector. Labor shortages and rising wage costs, exacerbated by the pandemic, have driven companies to seek automation solutions to maintain operational efficiency.

In response to these challenges, the North American robotics market experienced substantial growth in Q1-2022. The International Federation of Robotics (IFR) reports a 28% increase in orders for industrial robots from companies in U.S., Canada and Mexico compared to the same period in the previous year. This surge in demand has resulted in a 43% revenue increase, reaching $664 million. This growth trend is attributed to a post-pandemic boom and highlights the pivotal role of robotics in addressing operational challenges.

Russia-Ukraine War Impact

The ongoing Russia-Ukraine conflict made a significant impact on the packaging robotics industry and related sectors. The conflict, which began with Russia's military invasion of Ukraine, has disrupted supply chains, led to the closure of production facilities and caused uncertainties in the market. The disruption particularly pronounced in the packaging industry due to its reliance on materials and components from the affected regions.

Major effects of the conflict have been the closure of packaging and production facilities in both Ukraine and Russia. Many major western companies have exited the region, resulting in the closure of various facilities. For example, Ukraine's largest petrochemical plant, Karpatneftekhim, shut down operations due to martial law, while Swiss glass packaging provider Vetropack had to send employees home and suspend operations after its facility in Kyiv suffered severe damage. This disruption has led to supply chain interruptions and reduced production capacities.

AI Impact

AI is reshaping the packaging industry in profound ways, offering innovative solutions to enhance efficiency, sustainability and accuracy. One significant application of AI is through advanced vision systems for packaging inspection. Amazon, for instance, employs AI models that learn from customer complaints to optimize packaging materials, reducing product damage and shipping costs, while also cutting down on waste. These algorithms determine the most suitable packaging, resulting in lighter and eco-friendly packages that minimize the overall carbon footprint per item.

Machine Learning is also playing a pivotal role in processes like date labeling. By leveraging AI, companies can ensure standardized procedures, reducing manual errors and enhancing control for greater efficiency. The incorporation of data-embedded barcodes, as seen with Tesco, not only streamlines the packaging line but also contributes to the reduction of food waste and the prevention of errors during product labeling.

Moreover, AI-based recycling systems, exemplified by AMP Robotics, are transforming waste management. AI-powered robots like "Cortex" utilize optical sensors to sort recyclable materials, addressing the ecological cost of inadequate recycling practices and contributing to a more sustainable future. Monolith AI, for instance, enables manufacturers to create sustainable packaging designs while maintaining quality. By predicting performance and optimizing designs, companies can reduce costs and improve the environmental impact of their packaging solutions.

By Gripper Type

  • Clamp
  • Claw
  • Vacuum
  • Others

By Application

  • Case Packing
  • Palletizing
  • Pick and Place
  • Labeling
  • Inspection
  • Cartoning
  • Filling
  • Others

By End-User

  • Food and Beverage
  • Pharmaceuticals and Healthcare
  • Consumer Goods
  • Automotive
  • E-commerce and Logistics
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In April 2023, Shemesh introduced a groundbreaking innovation in the packaging industry with the launch of the TKS-C60 complete robotics-enhanced packaging line for cosmetics. This cutting-edge solution is engineered to streamline the entire packaging process, covering feeding, filling, capping, labeling, case packing and palletizing for cosmetics products of varying sizes and shapes. This comprehensive system is capable of managing a remarkable rate of 60 bottles per minute, offering uninterrupted bottling capabilities for a diverse range of cosmetic products, from creams and foundations to fragrances and nail polish.
  • In May 2023, Staubli Robotics unveiled its latest innovation, the PF3 automated guided vehicle (AGV), at the Automate 2023 event in North America. This AGV, recognized with a prestigious Red Dot Design Award, showcases Staubli's commitment to revolutionizing industrial intralogistics with its capabilities in high payloads, precision and safety. The PF3 AGV, which can carry payloads of up to 3 tons, boasts an ultra-compact yet robust design that enables efficient operations in manufacturing facilities.
  • In March 2023, Proco Machinery responded to the pressing issue of labor shortages in the packaging industry by introducing a new collaborative robot packer. The aim of this innovative solution is to address the challenges posed by the scarcity of available workers, enhance efficiency and provide manufacturers with a competitive edge.

Why Purchase the Report?

  • To visualize the global packaging robots market segmentation based on gripping, application, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of cement market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global packaging robots market report would provide approximately 61 tables, 66 figures and 184 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies
Product Code: PAC6834

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Gripping
  • 3.2. Snippet by Application
  • 3.3. Snippet by End-User
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Advancements Drive Packaging Robots market
      • 4.1.1.2. Automation and Efficiency Drive Market Growth
      • 4.1.1.3. Articulated robotics shaping the future of packaging automation
    • 4.1.2. Restraints
      • 4.1.2.1. High initial investment impact on packaging robotics
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Gripping

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Gripping
    • 7.1.2. Market Attractiveness Index, By Gripping
  • 7.2. Clamp*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Claw
  • 7.4. Vacuum
  • 7.5. Others

8. By Application

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2. Market Attractiveness Index, By Application
  • 8.2. Palletizing*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Case Packing
  • 8.4. Pick and Place
  • 8.5. Labeling
  • 8.6. Inspection
  • 8.7. Cartoning
  • 8.8. Filling
  • 8.9. Others

9. By End-user

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.1.2. Market Attractiveness Index, By End-User
  • 9.2. Food and Beverage*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Pharmaceuticals and Healthcare
  • 9.4. Consumer Goods
  • 9.5. Automotive
  • 9.6. E-commerce and Logistics
  • 9.7. Others

10. By Region

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2. Market Attractiveness Index, By Region
  • 10.2. North America
    • 10.2.1. Introduction
    • 10.2.2. Key Region-Specific Dynamics
    • 10.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Gripping
    • 10.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1. U.S.
      • 10.2.6.2. Canada
      • 10.2.6.3. Mexico
  • 10.3. Europe
    • 10.3.1. Introduction
    • 10.3.2. Key Region-Specific Dynamics
    • 10.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Gripping
    • 10.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1. Germany
      • 10.3.6.2. UK
      • 10.3.6.3. France
      • 10.3.6.4. Italy
      • 10.3.6.5. Russia
      • 10.3.6.6. Rest of Europe
  • 10.4. South America
    • 10.4.1. Introduction
    • 10.4.2. Key Region-Specific Dynamics
    • 10.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Gripping
    • 10.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1. Brazil
      • 10.4.6.2. Argentina
      • 10.4.6.3. Rest of South America
  • 10.5. Asia-Pacific
    • 10.5.1. Introduction
    • 10.5.2. Key Region-Specific Dynamics
    • 10.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Gripping
    • 10.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1. China
      • 10.5.6.2. India
      • 10.5.6.3. Japan
      • 10.5.6.4. Australia
      • 10.5.6.5. Rest of Asia-Pacific
  • 10.6. Middle East and Africa
    • 10.6.1. Introduction
    • 10.6.2. Key Region-Specific Dynamics
    • 10.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Gripping
    • 10.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

11. Competitive Landscape

  • 11.1. Competitive Scenario
  • 11.2. Market Positioning/Share Analysis
  • 11.3. Mergers and Acquisitions Analysis

12. Company Profiles

  • 12.1. ABB Robotics*
    • 12.1.1. Company Overview
    • 12.1.2. Product Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Key Developments
  • 12.2. Fanuc Corporation
  • 12.3. KUKA Robotics
  • 12.4. Yaskawa Electric Corporation
  • 12.5. Universal Robots
  • 12.6. Mitsubishi Electric Corporation
  • 12.7. Kawasaki Robotics
  • 12.8. Comau Robotics
  • 12.9. Staubli Robotics
  • 12.10. Omron Corporation

LIST NOT EXHAUSTIVE

13. Appendix

  • 13.1. About Us and Services
  • 13.2. Contact Us
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!