PUBLISHER: DataM Intelligence | PRODUCT CODE: 1347947
PUBLISHER: DataM Intelligence | PRODUCT CODE: 1347947
Global Advanced Metering Infrastructure Market reached US$ 21.4 billion in 2022 and is expected to reach US$ 54.1 billion by 2030, growing with a CAGR of 12.4% during the forecast period 2023-2030.
Advanced metering infrastructure is expected to be driven by growing new advancements and innovations, cutting-edge technologies are reshaping the way energy is generated, consumed and managed across the grid, contributing to the ongoing transition towards net-zero energy systems. Technologies like AMI 2.0 systems feature smart devices equipped with edge-computing capabilities, allowing real-time monitoring of energy generation and consumption.
Smart meters collect power measurements and communicate via networks like cellular networks or powerline communications, with software systems processing and delivering data as actionable insights. Companies like Landis + Gyr are introducing IoT-enabled meters that offer advanced metering and edge intelligence, supporting grid maintenance and efficiency. Other companies like Itron are incorporating next-generation meters and analytics capable of providing unprecedented visibility and control in the grid.
North America is the largest region in the advanced metering infrastructure market as the countries witnessing major growth in advanced metering infrastructure installations which reflects the increasing adoption of smart meters in the energy sector. The U.S. electric utilities have made significant strides in the deployment of AMI technologies, contributing to a more efficient and data-driven energy system.
According to a report by the Environmental Protection Agency, many water utilities in U.S. are currently transitioning to complete Advanced Metering Infrastructure deployment. The technology offers the capability to provide nearly real-time consumption data and personalized feedback to consumers. As a result, AMI holds the potential to assist consumers in achieving substantial water conservation.
The advanced metering infrastructure market is expected to be driven by growing demand for energy efficiency worldwide as smart technology enables utilities to optimize energy consumption, enhance grid management and achieve significant cost savings. Advanced meters enable consumers to monitor their energy usage in real time through online portals or mobile apps. The engagement fosters awareness and encourages consumers to adopt energy-efficient practices, further contributing to reduced energy consumption.
Honeywell has launched a carbon and energy management solution aimed at tracking building emissions and optimizing energy usage. Developed by Honeywell engineers in India, this cloud-based service is part of the Honeywell Forge platform for data, analytics and IoT capabilities. It enables building owners to account for carbon emissions down to a device level and achieve greater sustainability across their enterprises. The system utilizes smart meters, sensors and utility data to analyze energy consumption and emissions By Technology of utility. It considers factors such as occupancy, weather and real-time utility rates to provide insights into energy use and carbon footprint.
The advanced metering infrastructure market is expected to be driven by government efforts, regulatory frameworks, incentives and long-term energy strategies to promote the adoption of advanced metering infrastructure. Many countries have introduced regulatory mandates that require utilities to integrate smart meters to a certain percentage of their customers within a specified timeframe. These mandates often come with specific targets for AMI penetration and are backed by penalties for non-compliance.
The Indian government launched initiatives such as the "Smart Meter National Programme" to accelerate the implementation of smart meters all across the country. The program aims to replace conventional meters with smart meters in a phased manner, with the goal of improving billing accuracy, reducing losses and enabling demand-side management. Also, European Union's Third Energy Package requires member states to implement smart metering and sets a target of 80% market penetration for electricity by 2020 transforming Europe's advanced metering infrastructure.
High cost of installation, configuration and customization of AMI metering and communications systems incur significant impacting the advanced metering infrastructure market. Ameren Illinois estimates that the capital costs incurred due to full AMI deployment within an 8-year timeframe would amount to approximately $129 million over a 20-year period. The initial investment required for deployment can be a deterrent, especially for smaller utilities or those with limited budgets.
Installing AMI meters is a complex process involving various steps which makes it a high-cost project. The high installation costs can lead to a slower rate of adoption of AMI systems. The high costs of AMI deployment can potentially lead to increased utility bills for consumers, as these costs might be passed on to them. The consumer impact could create resistance to AMI adoption, especially if the perceived benefits aren't communicated effectively.
The global advanced metering infrastructure market is segmented based on technology, service, end-user and region.
Smart electricity meters hold the largest market share and experiencing significant growth worldwide as countries embrace the implementation of smart grids. The expansion of smart electricity metering infrastructure is evident through initiatives undertaken by various countries and organizations. The global push towards smart grids and AMI technology has led to a surge in smart meter installations. Many countries worldwide are working to connect households, factories, production plants and other end-users to smart grids, resulting in an increased demand for suitable hardware like smart meters.
GMR Power Corporation Limited, a subsidiary of GMR Infrastructure, is set to deploy smart meters across multiple locations in Uttar Pradesh, India. The initiative is aimed to enhance the accuracy of meter readings, optimize energy distribution and enable consumers to better understand and manage their energy consumption. The project is expected to improve the overall efficiency of the electricity distribution system in Uttar Pradesh by enabling real-time data collection and communication between consumers and utilities.
North America is the largest region in the advanced metering infrastructure market, witnessed a significant increase in AMI installations driven by the adoption of smart meters, advanced technologies and policies promoting grid modernization. The growth of AMI installations is getting support from state policies and initiatives that promote the adoption of smart meters and grid modernization. The efforts significantly lead to the implementation of AMI technologies in residential sectors and also in commercial and industrial sectors.
Furthermore, The U.S. Energy Information Administration reported that there were approximately 111 million AMI installations in U.S. in 2021, accounting for about 69% of total electric meter installations. It indicates a substantial shift towards AMI technology adoption. Notably, residential customers played a significant role in driving this growth, constituting about 88% of the total AMI installations.
The major global players in the market include: Itron, Inc., Landis + Gyr, Sensus (Xylem Inc.), Elster Group (owned by Honeywell), Siemens AG, Kamstrup, Badger Meter, Inc., Schneider Electric, Aclara Technologies and Trilliant.
COVID-19 made a significant impact on advanced metering infrastructure market as utilities faced disruptions as commercial and industrial operations shut down and load patterns changed. AMI played a crucial role in helping utilities maintain a steady revenue stream. With its ability to facilitate meter-to-cash transactions and over-the-air reads for billing, AMI reduced the need for physical contact between utility employees and customers.
As lockdowns and social distancing measures were enforced to mitigate the spread of the virus, the traditional meter reading process faced limitations due to the restricted access to premises and the need to minimize physical contact. In this context, AMI technology played a vital role by enabling utilities to remotely collect consumption data, ensuring accurate and timely billing without the need for in-person interactions.
The Russia-Ukraine war made a significant impact on advanced metering infrastructure market with disruptions in supply chains, economic uncertainties leading to delayed investment decisions by utility companies considering AMI implementations and possible resource diversion away from technology projects due to shifting priorities caused by the conflict. While the conflict's direct impact remains limited, escalating tensions might lead to further economic uncertainties affecting technology investment decisions in the utility sector.
The market has been affected by geopolitical tension and changes in international collaborations mainly in Europe which is due to strained diplomatic relations and indirectly influences AMI technology development and implementation. Also, any significant shifts in energy supplies and infrastructure could indirectly alter the priorities and operations of utility companies, including their approach to AMI projects.
The global advanced metering infrastructure market report would provide approximately 53 tables, 50 figures and 190 Pages.
LIST NOT EXHAUSTIVE