PUBLISHER: DataM Intelligence | PRODUCT CODE: 1347944
PUBLISHER: DataM Intelligence | PRODUCT CODE: 1347944
Global Aircraft Battery Charger Market reached US$ 570.5 million in 2022 and is expected to reach US$ 1032.9 million by 2030, growing with a CAGR of 7.9% during the forecast period 2023-2030.
The increase in carbon emissions from the aviation sector and the need to address climate change have driven the market for aircraft batteries, particularly electric propulsion systems. Battery electric aircraft, which produce no direct emissions during flight, are seen as a potential solution to address these concerns.
The urgency to reduce aviation emissions has sparked innovation and investment in electric aviation technologies. Governments, research institutions and private companies are actively working on improving battery charging technology, pushing the boundaries of energy density, weight reduction and efficiency.
Furthermore, according to IEA, the rise in aviation emissions in 2022, nearing 80% of pre-pandemic levels. It underscores the urgency of finding sustainable solutions to curb emissions. The call for measures to bring emissions below 1,000 Mt CO2 by 2030 emphasizes the industry's recognition of the necessity to curb emissions in line with global climate goals.
The battery electric aircraft having no direct emissions, lower operational costs, high efficiency and reduced noise pollution underscores the advantages of these technologies in addressing emissions and sustainability concerns. North America is the largest region in the aircraft battery charger market driven by USA's commitment to advancing electric aviation technology and contributing to global climate goals.
Furthermore, NASA's development of the all-electric X-57 Maxwell aircraft project not only marks a significant step toward electric aviation but also aligns with U.S. climate goal of achieving net-zero greenhouse gas emissions from the aviation sector by 2050, which increases the demand for highly advanced batteries and their chargers in the aviation sector.
The aircraft battery charger market is expected to be driven by the growing electrical aviation sector driving the market for advanced aircraft batteries. The success of electric aviation depends heavily on advancements in battery technology. Battery industry challenges, including supply chain issues and the demand for raw materials, need to be addressed to support the growth of electric aircraft.
The development of electric aircraft like Alice represents a new era in aviation, offering benefits such as zero emissions, reduced noise pollution and lower operating costs. The versatility of electric aircraft, especially for short-haul routes, is driving interest from airlines and businesses. The evolving landscape of electric aviation driving the market for advanced aircraft batteries, spurring innovations, sustainability and a transformative shift in the aviation industry.
The aircraft battery charger market is expected to be driven by rising innovations and advancement in technology. To meet the demands of electric aviation, batteries are undergoing transformative changes in terms of specific energy and power density which increasig the need for enhanced chargers. Durability is equally paramount, as aircraft batteries must endure numerous charge cycles without significant capacity decline. Battery cycle life improvements are thus being pursued to align with the endurance demands of compatible chargers.
Aerovolt has developed its own 'Squadron' management system for booking charging slots, real-time charger usage monitoring, load balancing and network communication. The company's efforts are supported by the integration of smart charging data into popular flight planning and navigation application SkyDemon. As of the latest update, Aerovolt has completed initial installations at Sandown, Isle of Wight and Lydd, Ken.
The aircraft battery market can be hindered by battery maintenance issues, maintenance-related challenges can undermine the reliability and safety of these batteries, leading to potential hazards and disruptions in flight operations. If aircraft battery maintenance is not focused it can create internal failures which lead to short circuits, fires and even battery explosions, posing a significant safety risk to both personnel and aircraft systems.
Aircraft batteries experience self-discharge over time, even when not in use. Factors such as battery type, age, temperature and storage conditions influence the rate of self-discharge. Older batteries are particularly susceptible to losing their charge over time and this issue is magnified during prolonged periods of inactivity. Inadequate battery maintenance during prolonged storage can lead to batteries falling below operational capacity, potentially causing problems during startup or operation.
The global aircraft battery charger market is segmented based on type, application, aircraft type and region.
Lead-acid batteries charger hold the largest segment in the aircraft battery market as especially well-suited for aircraft engines that require a short burst of high current to start. Lead-acid batteries are the most commonly installed batteries among general aviation aircraft. Most light aircraft operate on either a 12 V or 24 V electrical system and lead-acid batteries are built from cells that output 2 V each, connected in series to achieve the desired voltage.
Furthermore, rise in advancements and innovations leading the way for lead acid batteries in aircraft sector. For instance, Hawker presents a new paradigm in aircraft power solutions. Within their robust enclosures, two 12 Volt monoblocs are meticulously housed. These monoblocs, ingeniously linked in series, generate a formidable power source that defies conventional boundaries. The battery case, a testament to durability and precision, is expertly fabricated using either stainless steel or glass reinforced plastic.
North America is the largest region in the aircraft battery market driven by USA's commitment to advancing electric aviation technology. As the electric aircraft sector evolves, battery technology remains a critical enabler for its success. By developing comprehensive guidance, engaging with state departments of transportation and actively involving communities, U.S. is laying the groundwork for the widespread adoption of electric aviation and contributing to a more sustainable future of air travel.
Engineering firms like WSP is at the forefront of assisting airports in preparing for the era of electric aviation. Collaborating with clients like Philadelphia International Airport, WSP is actively incorporating provisions for state-of-the-art vertiport facilities into airport master plans, showcasing the commitment to integrating groundbreaking advancements into aviation operations. WSP's involvement underscores the significance of battery technology in the growth of electric aviation. Electric aircraft like eVTOLs offer zero emissions, quieter operations and potentially lower operating costs, making them a promising solution for sustainable air travel.
The major global players in the market include: Eaton, Electro.Aero, Concorde, Fine Art America, True Blue Power, AeroVironment, Lamar Technologies LLC, Pilot John International and Securaplane, MGM Compro.
COVID-19 made a significant impact on the aircraft battery charger market with the disruption in the global supply chain, impacting production and demand. Lockdowns and travel restrictions halted business operations, causing a sharp decline in aviation activity and the manufacturing of new aircraft. Travel restrictions on material flows disrupted industrial electric-powered tools, triggering a ripple effect.
China's central role in battery manufacturing exacerbated the challenges. The country's shutdowns reverberated across the globe, disrupting material flows and supply chains. Lead times for production lengthened, affecting lithium-ion battery fabrication. China's central role in battery manufacturing exacerbated the challenges. The country's shutdowns reverberated across the globe, disrupting material flows and supply chains. Lead times for production lengthened, affecting lithium-ion battery fabrication.
Russia-Ukraine war made a notable impact on the aircraft battery charger market significantly impacting the supply of critical metals and materials essential for alternative energy technologies. The conflict's disruption to supply chains has raised concerns about the availability of resources crucial for the decarbonization and transition to green energy. The war's effects on the availability and cost of critical battery materials are rippling through industries, forcing companies to reevaluate their sourcing strategies, consider price hikes and explore alternative suppliers to navigate these challenges.
Furthermore, metals like lithium, nickel and cobalt, integral to batteries production, have seen setbacks due to the war. Ukraine's lithium reserves remain untapped and the global cobalt supply chain, which is already marred by human rights issues, is further strained. Also, Ukraine's lithium reserves remain untapped and the global cobalt supply chain, which is already marred by human rights issues, is further strained.
The global aircraft battery charger market report would provide approximately 61 tables, 58 figures and 186 Pages.
LIST NOT EXHAUSTIVE