Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1297793

Cover Image

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1297793

Global Genomics in Cancer Care Market - 2023-2030

PUBLISHED:
PAGES: 195 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 4350
PDF & Excel (Multiple User License)
USD 4850
PDF & Excel (Enterprise License)
USD 7850

Add to Cart

Market Overview

The Global Genomics In Cancer Care Market reached US$ 13.4 billion in 2022 and is projected to witness lucrative growth by reaching up to US$ 51.1 billion by 2030. The Global Genomics In Cancer Care Market is expected to exhibit a CAGR of 18.9% during the forecast period 2023-2030.

The identification of specific molecular targets in cancer cells is aided by genomic analysis. Targeted therapies can destroy cancer cells while sparing healthy cells by specifically inhibiting or preventing the activation of these targets. For instance, drugs like trastuzumab, which targets the HER2 protein in HER2-positive breast cancer, and imatinib, which targets the BCR-ABL fusion protein in chronic myeloid leukemia.

The increasing application in diagnostics, personalized medicine, and drug discovery & development drives the genomics in cancer care market growth. Factors such as rising cancer incidence, increasing awareness about early disease diagnosis, growing geriatric population, and technological advancement drive market growth.

Market Dynamics

The Advancement in Genome Sequencing is Boosting the Global Genomics in Cancer Care Market Growth During the Forecast Period

In DNA sequencing and genomic analysis of tumors at the nucleotide level, new molecular causes of the disease have been discovered, revolutionizing our understanding of cancer biology and paving the way for more effective treatments and better patient outcomes.

A wide range of sequencing platforms, covering the present and future state of the art for short-read, high-throughput, and long-read single molecule and nanopore sequencing methods from bulk tissue to single cells, as well as novel molecular approaches for extremely low-input library preparation methods, targeting genes of interest in both DNA and RNA profiling applications, as well as amplification-free Cas9-based enrichment strategies, are among the technologies.

The Adoption of Liquid Biopsies is Boosting the Global Genomics in Cancer Care Market Growth During the Forecast Period

The most effective approach for identifying and treating cancer is the collection of tumor tissue through biopsies. According to the National Cancer Institute, with an increasing number of cutting-edge medications, lung cancer is one of the deadliest malignancies in the world and will likely claim the lives of over 150,000 people annually.

Precision cancer care for patients with advanced disease is changing due to innovations in the development of liquid biopsy platforms during the past ten years, which have resulted in an increasing number of regulatory approvals for blood-based testing.

The Expansion of Personalized Medicine Provides Global Genomics in Cancer Care Market Growth Opportunities

According to the FDA, personalized medicine and targeted therapies represent a substantial advancement in drug development, and oncology is one of the therapeutic fields that is growing the fastest for some types of tumors. Targeted therapies and immunotherapies are the two types of medicines that personalized medicine frequently uses in the treatment of cancer.

COVID-19 Impact Analysis

The COVID-19 pandemic has significantly impacted Genomics In The Cancer Care Market. The research on COVID-19 and the creation of a vaccine received significant attention from research institutions and funding sources. This may have caused delays or funding restrictions for research initiatives unrelated to COVID, such as genetics in cancer treatment. This might affect the development of novel treatments or diagnostic tools and the advancement of ongoing genomic studies.

Russia-Ukraine Conflict Analysis

The impact of the Russia-Ukraine war on genomics in the cancer care market is complex and multifaceted. Resources and financing for healthcare and research projects, especially those involving genetics in cancer treatment, were diverted due to the conflict.

Investments in healthcare infrastructure and research reduced government priorities and moved towards managing the immediate effects of the conflict, which could have an impact on the development and uptake of genomics technology.

Segment Analysis

The Global Genomics In Cancer Care Market is segmented based on product, technology, application, End User and region.

The Genome Sequencing Segment is Expected to Hold a Dominant Position in the Market Over the Forecast Period

The genome sequencing segment accounted for the highest market stake, accounting for approximately 36.4% of the genomics in the cancer care market in 2022. Genome sequencing can be done using various techniques and technologies, and technological improvements have made it possible to sequence genomes more quickly, accurately, and affordably.

Next-generation sequencing (NGS) technologies have transformed genome sequencing. Compared to Sanger sequencing, NGS platforms can produce enormous amounts of sequencing data in parallel, enabling high-throughput sequencing. Different strategies, such as sequencing by synthesis or ligation, are used by NGS techniques, such as Illumina sequencing, to ascertain the DNA sequence.

Geographical Analysis

Increasing Collaborations and Partnerships Among the Key Players, Increasing FDA Approvals, and Advancement in Genomics in Cancer Care Dominate the North American Region

North America is expected to dominate the genomics in the cancer care market, accounting for around 39.9%. The market players are applying market strategies such as product launches and collaboration to expand their business. For instance, in January 2023, Arima Genomics, Inc. announced a partnership with Protean BioDiagnostics, to make a next-generation sequencing (NGS)-based test from Arima available to doctors for patient management in the United States.

Competitive Landscape

The major global players in the market include: Roche Diagnostics, AstraZeneca PLC, Illumina, Inc., Affymetrix, Agilent Technologies, Cancer Genetics Inc., Beckman Coulter Inc., Bio-Rad Labs, Danaher Corporation, and Sigma Aldrich Corporation (Merck KGaA) (Merck KGaA) among others.

Why Purchase the Report?

  • To visualize the Global Genomics In Cancer Care Market segmentation based on the product, technology, application, End User, and region and understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of genomics at the cancer care market level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The Global Genomics In Cancer Care Market Report Would Provide Approximately 69 Tables, 69 Figures And 195 pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies
Product Code: BT3410

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Product
  • 3.2. Snippet by Technology
  • 3.3. Snippet by Application
  • 3.4. Snippet by End User
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. The growing burden of cancer
    • 4.1.2. Restraints
      • 4.1.2.1. High price associated with genomics devices
    • 4.1.3. Opportunity
      • 4.1.3.1. The expansion of personalized medicine
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's 5 Forces Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Unmet Needs
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID-19
    • 6.1.2. Scenario During COVID-19
    • 6.1.3. Scenario Post COVID-19
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During the Pandemic
  • 6.5. Manufacturers' Strategic Initiatives
  • 6.6. Conclusion

7. Russia-Ukraine War Analysis

8. Artificial Intelligence Analysis

9. By Product

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 9.1.2. Market Attractiveness Index, By Product
  • 9.2. Instruments*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Consumables
  • 9.4. Services

10. By Technology

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.1.2. Market Attractiveness Index, By Technology
  • 10.2. Genome Sequencing*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. PCR
  • 10.4. Microarray
  • 10.5. Nucleic Acid Extraction and Purification
  • 10.6. Others

11. By Application

    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.1.2. Market Attractiveness Index, By Application
  • 11.2. Diagnostics*
    • 11.2.1. Introduction
    • 11.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 11.3. Personalized Medicine
  • 11.4. Drug Discovery & Development
  • 11.5. Research

12. By End User

  • 12.1. Introduction
    • 12.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 12.1.2. Market Attractiveness Index, By End User
  • 12.2. Hospitals*
    • 12.2.1. Introduction
    • 12.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 12.3. Research Institutes
  • 12.4. Academic Institutes
  • 12.5. Others

13. By Region

  • 13.1. Introduction
    • 13.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 13.1.2. Market Attractiveness Index, By Region
  • 13.2. North America
    • 13.2.1. Introduction
    • 13.2.2. Key Region-Specific Dynamics
    • 13.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 13.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 13.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 13.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 13.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 13.2.7.1. The U.S.
      • 13.2.7.2. Canada
      • 13.2.7.3. Mexico
  • 13.3. Europe
    • 13.3.1. Introduction
    • 13.3.2. Key Region-Specific Dynamics
    • 13.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 13.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 13.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 13.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 13.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 13.3.7.1. Germany
      • 13.3.7.2. The U.K.
      • 13.3.7.3. France
      • 13.3.7.4. Italy
      • 13.3.7.5. Spain
      • 13.3.7.6. Rest of Europe
  • 13.4. South America
    • 13.4.1. Introduction
    • 13.4.2. Key Region-Specific Dynamics
    • 13.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 13.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 13.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 13.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 13.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 13.4.7.1. Brazil
      • 13.4.7.2. Argentina
      • 13.4.7.3. Rest of South America
  • 13.5. Asia-Pacific
    • 13.5.1. Introduction
    • 13.5.2. Key Region-Specific Dynamics
    • 13.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 13.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 13.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 13.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 13.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 13.5.7.1. China
      • 13.5.7.2. India
      • 13.5.7.3. Japan
      • 13.5.7.4. Australia
      • 13.5.7.5. Rest of Asia-Pacific
  • 13.6. Middle East and Africa
    • 13.6.1. Introduction
    • 13.6.2. Key Region-Specific Dynamics
    • 13.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 13.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 13.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 13.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User

14. Competitive Landscape

  • 14.1. Competitive Scenario
  • 14.2. Product Benchmarking
  • 14.3. Company Share Analysis
  • 14.4. Key Developments and Strategies

15. Company Profiles

  • 15.1. Roche Diagnostics*
    • 15.1.1. Company Overview
    • 15.1.2. Product Portfolio and Description
    • 15.1.3. Financial Overview
    • 15.1.4. Key Developments
  • 15.2. AstraZeneca PLC
  • 15.3. Illumina, Inc
  • 15.4. Affymetrix
  • 15.5. Agilent Technologies
  • 15.6. Cancer Genetics Inc.
  • 15.7. Beckman Coulter Inc.
  • 15.8. Bio-Rad Labs
  • 15.9. Danaher Corporation
  • 15.10. Sigma Aldrich Corporation (Merck KGaA)

LIST NOT EXHAUSTIVE

16. Appendix

  • 16.1. About Us and Services
  • 16.2. Contact Us
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!