Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1272769

Cover Image

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1272769

Global Cell Culture Protein Surface Coating Market - 2023-2030

PUBLISHED:
PAGES: 195 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 4350
PDF & Excel (Multiple User License)
USD 4850
PDF & Excel (Enterprise License)
USD 7850

Add to Cart

Market Overview

The global cell culture protein surface coating market size was valued at US$ 843.4 million in 2022 and is estimated to reach US$ 1,810.5 million by 2030, growing at a CAGR of 10.3% during the forecast period (2023-2030). An increase in the product launches by major key players helps to boost cell culture protein surface coating market growth over the forecast period. For instance, in June 2020, Corning Incorporated launched new products, including Matrigel matrix-3D plates.

Coating as an additional surface treatment stands for all additional modifications made to increase cell adhesion and the standard plasma or corona treatment performed on all cell culture plastic by the manufacturer. Usually, a coating is done with proteins or peptides. The disadvantages of cell culture are: highly skilled personnel, techniques must be performed using strict asepsis techniques because animal cells grow slower than many of the common contaminants (bacteria, viruses, and fungi).

Market Dynamics

Increasing adoption of 3D cell culture will drive the cell culture protein surface coating market growth

The additional dimensionality of 3D cell cultures is the crucial feature leading to the differences in cellular responses. It not only influences the spatial organization of the cell surface receptors engaged in interactions with surrounding cells, but it also induces physical constraints on cells.

These spatial and physical aspects in 3D cultures affect the signal transduction from the outside to the inside of cells and ultimately influence gene expression and cellular behavior. It has been demonstrated that cell responses in 3D cultures are more similar to in vivo behavior compared to 2D cultures.

The risk of microbial contamination and others are factors hindering the market growth

Cell cultures should be constantly monitored to prevent contamination and avoid wastage of protein surface coating of the cell cultures, which can be expensive in nature, thereby impacting the growth of the market.

In addition, tissue composition is variable and heterogeneous. Replicas from the same sample have various constituents. To replicate an experimental result, cell lines must be manipulated many times in serial passages.

For instance, every culture will be different from the original and less uniform in its constitution. The replicas are randomly mixed in each passage to resolve this issue, and the selective pressure of growing conditions tends to produce an optimal prevalent phenotype. These disadvantages will hamper the cell culture protein surface coating market growth.

COVID-19 Impact Analysis

As per the report published by the Journal of Clinical Virology in July 2022, there was a significant positive correlation between the probability of isolating SARS-CoV-2 in culture, fewer days of symptoms, and a lower RT-PCR cycle threshold value.

Hence, the cell culture was used during COVID-19 for proper diagnosis and was expected to drive the growth of the cell culture protein surface coatings market. As viral studies are still ongoing, it is expected to have a significant impact in the coming future.

Russia-Ukraine Conflict Analysis

The conflict between Russia and Ukraine has caused a disruption of the supply chain for some of the equipment used in culture, increasing costs for consumers and making it more difficult for them to access the necessary equipment. These factors have had a significant impact on the cell culture protein surface coating market.

Segment Analysis

The global cell culture protein surface coating market is segmented based on coating type, protein source, and region.

The pre coating segment is expected to hold a dominant position during the forecast period

In coating type segment, the precoating segment accounted for the highest cell culture protein surface coating market size of around 3/5th in 2022. Depending on the quality and quantity control of the plasma treatment surface of the flask, petri dish or microwell plates are activated for adhesion either homogeneously or artefacts, and it may be inserted, as regions like edges are not treated or parts in the middle area or over or under activated.

Another important part of choosing a cell culture consumable supplier is the construction design. Multiwell plates and petri dishes are strongly influenced by adhesion.

Geographical Analysis

North America holds a dominant position in the market

One of the secrets that allow Canada to punch above its weight in the biomanufacturing economy is the tradition of collaboration between academia, industry, non-profits, and government support. In British Columbia, both the University of Victoria and the University of British Columbia have strong undergraduate programs in biomedical engineering that provide an important supply of talent to feed the growing biomanufacturing ecosystems and address challenges in regenerative medicine.

The Canadian government has already invested 1.2 billion dollars into a national biomanufacturing strategy that they continue to support. The Canadian government also supports research and development through its national funding agency - the Natural Sciences and Engineering Research Council.

Competitive Landscape

The major global players include Thermo Fisher Scientific, Corning, Merck, PerkinElmer, Greiner Bio-One International GmbH, Agilent Technologies, BRAND GMBH + CO KG, Kollodis BioSciences, DenovoMATRIX, and faCellitate among others.

Why Purchase the Report?

  • To visualize the global cell culture protein surface coating market segmentation based on the type, end user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of global cell culture protein surface coating market level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global cell culture protein surface coating market report would provide approximately 92 tables, 108 figures and 195 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies
Product Code: BT3671

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Coating Type
  • 3.2. Snippet by Protein Source
  • 3.3. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Increasing the adoption of 3D cell culture will drive the cell culture protein surface coating
    • 4.1.2. Restraints
      • 4.1.2.1. Risk factors such as genetic mutations
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Forces Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Before COVID-19 Scenario
    • 6.1.2. Present COVID-19 Scenario
    • 6.1.3. Post COVID-19 or Future Scenario
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Coating Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Coating Type
    • 7.1.2. Market Attractiveness Index, By Coating Type
  • 7.2. Precoating*
    • 7.2.1. Multiwall/microwell plates
    • 7.2.2. Introduction
    • 7.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Flasks
  • 7.4. Petri dishes
  • 7.5. Self-coating

8. By Protein Source

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Protein Source
    • 8.1.2. Market Attractiveness Index, By Protein Source
  • 8.2. Animal-derived*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Synthetic
  • 8.4. Human-derived
  • 8.5. Plant-derived

9. By Region

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 9.1.2. Market Attractiveness Index, By Region
  • 9.2. North America
    • 9.2.1. Introduction
    • 9.2.2. Key Region-Specific Dynamics
    • 9.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Coating Type
    • 9.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Protein Source
    • 9.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.2.5.1. The U.S.
      • 9.2.5.2. Canada
      • 9.2.5.3. Mexico
  • 9.3. Europe
    • 9.3.1. Introduction
    • 9.3.2. Key Region-Specific Dynamics
    • 9.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Coating Type
    • 9.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Protein Source
    • 9.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.3.5.1. Germany
      • 9.3.5.2. The U.K.
      • 9.3.5.3. France
      • 9.3.5.4. Italy
      • 9.3.5.5. Spain
      • 9.3.5.6. Rest of Europe
  • 9.4. South America
    • 9.4.1. Introduction
    • 9.4.2. Key Region-Specific Dynamics
    • 9.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Coating Type
    • 9.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Protein Source
    • 9.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.4.5.1. Brazil
      • 9.4.5.2. Argentina
      • 9.4.5.3. Rest of South America
  • 9.5. Asia-Pacific
    • 9.5.1. Introduction
    • 9.5.2. Key Region-Specific Dynamics
    • 9.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Coating Type
    • 9.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Protein Source
    • 9.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.5.5.1. China
      • 9.5.5.2. India
      • 9.5.5.3. Japan
      • 9.5.5.4. Australia
      • 9.5.5.5. Rest of Asia-Pacific
  • 9.6. Middle East and Africa
    • 9.6.1. Introduction
    • 9.6.2. Key Region-Specific Dynamics
    • 9.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Coating Type
    • 9.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Protein Source
    • 9.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country

10. Competitive Landscape

  • 10.1. Competitive Scenario
  • 10.2. Market Positioning/Share Analysis
  • 10.3. Mergers and Acquisitions Analysis

11. Company Profiles

  • 11.1. Thermo Fisher Scientific*
    • 11.1.1. Company Overview
    • 11.1.2. Product Portfolio and Description
    • 11.1.3. Financial Overview
    • 11.1.4. Key Developments
  • 11.2. Corning
  • 11.3. Merck KGaA
  • 11.4. PerkinElmer, Inc
  • 11.5. Greiner Bio-One International GmbH
  • 11.6. Agilent Technologies
  • 11.7. BRAND GMBH + CO KG
  • 11.8. Kollodis BioSciences Inc
  • 11.9. DenovoMATRIX
  • 11.10. faCellitate

LIST NOT EXHAUSTIVE

12. Appendix

  • 12.1. About Us and Services
  • 12.2. Contact Us
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!