PUBLISHER: DataM Intelligence | PRODUCT CODE: 1268946
PUBLISHER: DataM Intelligence | PRODUCT CODE: 1268946
The precision medicine software market is expected to reach US$ 3,706.4 million in 2030, from its recorded value of US$ 1,550.7 million in 2022, growing with a CAGR of 11.8% during the forecast period. A few of the key market players such as Hitachi Vantara LLC (Hitachi, Ltd.), Koninklijke Philips N.V., Syapse, Inc., SOPHiA GENETICS, QIAGEN, Velsera, Foundation Medicine Inc. (F. Hoffmann-La Roche Ltd), 2bPrecise (AccessDx Laboratory), Pieriandx, Inc., MediCardia Health, Translational Software Inc., and Lifeomic Holdings LLC among others hold a majority of the market share through various market strategies such as product launches, acquisitions, partnerships, collaborations, and business expansions.
For instance, on March 01, 2023, Philips introduced its completely interoperable smart imaging systems and informatics solutions to connect crews in oncology, pathology, radiology, and cardiology to improve clinical conviction and promote precision in diagnosis and treatment. For instance, on January 09, 2023, the personalized circulating tumor DNA (ctDNA) monitoring assay FoundationOne Tracker was invented by Foundation Medical, Inc., a leader in molecular profiling for cancer, and Natera, Inc., a world leader in cell-free DNA testing, as part of an early access program for clinical usage. Moreover, clinical trials can now employ the test's investigational use-only variant.
The global precision medicine software market has been witnessing significant growth in recent years, driven by advancements in genomics, increasing adoption of electronic health records (EHRs), and growing demand for personalized medicine. The market is expected to continue to grow at a considerable rate in the coming years, as precision medicine becomes more mainstream and integrated into routine clinical practice.
Rapid advancements in genomics, including DNA sequencing technologies, have enabled the generation of vast amounts of genomic data. Precision medicine software plays a critical role in analyzing and interpreting this genomic data to identify disease-causing genetic mutations, guide treatment decisions, and develop personalized treatment plans.
The increasing adoption of electronic health records (EHRs) has been a significant driver in the healthcare industry, including the field of precision medicine. EHRs are digital versions of a patient's medical history, including their medical conditions, diagnoses, treatments, medications, and other relevant health information, which are stored in electronic format and can be accessed by authorized healthcare providers.
The adoption of EHRs has been driven by various factors, including government initiatives, regulatory requirements, technological advancements, and the need for improved healthcare outcomes. EHRs provide healthcare providers with quick and easy access to a patient's comprehensive medical history, including genomic data, which is crucial for precision medicine. This enables healthcare providers to make more informed decisions about patient care, develop personalized treatment plans, and tailor interventions based on an individual's unique health characteristics.
EHRs allow for a seamless exchange of patient information among different healthcare providers and facilities, facilitating better coordination of care. This is especially important in precision medicine, where multiple stakeholders, including geneticists, oncologists, pharmacists, and other specialists, may be involved in a patient's care. EHRs enable the exchange of genomic data, clinical data, and other relevant information, supporting precision medicine decision-making across different healthcare settings.
The high cost of precision medicine software is one of the significant market restraints that may impact the global precision medicine software market growth. Precision medicine software involves complex algorithms and data analytics to analyze and interpret large amounts of data, including genomic data, clinical data, and lifestyle data, to provide personalized treatment plans for patients. The application type, implementation, and maintenance of such sophisticated software solutions can be costly, which may pose challenges for adoption and utilization.
Precision medicine software requires continuous research to keep up with the latest advancements in genomic data analysis, data integration, and decision-making algorithms. Investing in R&D to develop and update precision medicine software can be costly, especially for smaller companies or organizations with limited resources.
The COVID-19 pandemic has accelerated the adoption of digital technologies in healthcare, including the use of telemedicine, remote monitoring, and digital health solutions. This increased reliance on digital health technologies may also drive the adoption of precision medicine software, which can provide remote access to genomic data, facilitate teleconsultations, and enable remote monitoring and personalized treatment plans for patients. Precision medicine software can also aid in the management of clinical trials for potential treatments and vaccines for COVID-19.
The COVID-19 pandemic has disrupted research in many areas, including precision medicine. Clinical trials, data collection, and research collaborations have been impacted by lockdowns, travel restrictions, and resource reallocation to address the pandemic.
Precision medicine relies heavily on the availability of large and diverse datasets for analysis and decision-making. The conflict may disrupt data sharing and exchange between Russia and Ukraine, leading to limited access to relevant patient data for precision medicine research and applications. Conflict can lead to the displacement of healthcare professionals, including researchers and clinicians, from the affected region. This can result in a loss of expertise and talent in the field of precision medicine, leading to potential setbacks in research efforts. It's important to note that the situation is complex and evolving, and the actual impact on precision medicine software may vary depending on the specific circumstances of the conflict.
The global precision medicine software market is segmented based on delivery mode, application type, end user, and region.
The market value for cloud-based segment is likely to reach US$ 2,436.6 million in 2030, from its recorded value of US$ 1,011.8 million in 2022, growing with a CAGR of 11.9% during the forecast period (2023 to 2030).
Cloud-based deployment means renting an internet space from a third party and storing the data on remote servers. This solution is convenient as it has no upfront costs and requires no additional staff to maintain hardware. Cloud deployment is scalable and flexible according to the budget and usage, eases the burden on IT staff, and easier to perform regular backups.
For instance, Synapse Raydar is a complete real-world data platform created by combining technology, deep clinical understanding, regulatory experience, and rigorous quality control. Raydar converts clinically complicated, highly contextual oncology data into actionable insights.
Raydar's patented capabilities illuminate the entire patient journey via Raydar Interoperability, Raydar Knowledge Management Services, Raydar AI, and Raydar Algo. Similarly, 2bPrecise technology, which is cloud-based, absorbs molecular data from laboratories and clinical information from EHRs, synthesizing them into a clinical-genomic ontology and giving precision medicine insights to doctors inside their familiar workflow across any EHR. Furthermore, the solution is designed to interact with changing information sources and care recommendations. When combined with the rest of the patient information, this actionable data set contributes to improved diagnosis and early treatment.
The North American precision medicine software market was valued at US$ 667.2 million in 2022 and is likely to reach US$ 1,611.3 million by 2030, growing at a CAGR of 12.0% during 2023-2030.
North America accounted for the highest market share of 43.0% in 2022, which will increase to 43.37% in 2030. The presence of a large number of pharmaceutical companies, growing R&D expenditure, rising patient preference for precision medicine, collaborative agreements among manufacturers, and surging cancer patients, new product launches, and technological advancements are driving the growth of the market in the region.
For instance, according to National Cancer Institute, approximately 1,806,590 new cases were analyzed with cancer, which led to 606,520 deaths in 2020. Moreover, the American Cancer Society identified 1.9 million cancer cases in 2021, and over 608,570 deaths were cancer-related. Similarly, CDC assessed that annual new cancer cases will be 29.5 million by 2040.
Moreover, the presence of key market players such as Syapse, Inc, 2bprecise, LLC, Fabric Genomics, Inc., Foundation Medicine, Inc., Velsera, Translational Software Inc., LifeOmic Holdings LLC, and Koninklijke Philips N.V. among others holding most of the precision medicine software market is expected to ensure the growth of North American precision medicine software market at a high CAGR throughout the forecast period.
The precision medicine software market is highly competitive with the presence of a large number of existing major players and small vendors. Some of the major players in the global precision medicine software market include Hitachi Vantara LLC (Hitachi, Ltd.), Koninklijke Philips N.V., Syapse, Inc., SOPHiA GENETICS, QIAGEN, Velsera, Foundation Medicine Inc. (F. Hoffmann-La Roche Ltd), 2bPrecise (AccessDx Laboratory), Pieriandx, Inc., MediCardia Health, Translational Software Inc., and Lifeomic Holdings LLC among others.
The global precision medicine software market report would provide approximately 54 tables, 46 figures, and 195 Pages.
LIST NOT EXHAUSTIVE